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1 PERCEIVING SYSTEMS

1.1 Research Overview

Perceiving Systems is focused on understand-
ing the 3D world and its motion as captured by
images. Our goal is to formulate models of the
world, refine these models with machine learn-
ing, and then relate these to how the world ap-
pears in images, enabling detection, recognition,
tracking, and analysis. Given rich representa-
tions of the 3D world, image formation is the
easy part; inverting the imaging process to pro-
duce descriptions from pixels is the challenge.
We seek representations and algorithms that fa-
cilitate this reasoning and provide a foundation
for vision systems that understand and interact
with the time-varying 3D world.

Our fundamental assumption is that the parts
of vision that involve the 3D world, surfaces,
and light are “easy” in the sense that they relate
to physical properties that can be precisely mod-
eled. Such physical models are powerful because
they require little (or no) training data and gen-

eralize widely. While the physical models may
be simple, using them to analyze images – to
solve inverse graphics – has proven hard. We
have made significant progress in this regard in
terms of new inference methods, our ability to fit
3D graphics models to image data, and our abil-
ity to extract basic physical primitives (intrinsic
images) from images and video.

There are many aspects of the world that are
not so easily described by physics – these we
must learn. For example, the shapes of objects,
the patterns of textures, the motion of animals
are all more complex and we resort to learning
their statistics. We have developed new statistical
models of shape, new tools for transfer learning,
new methods for object detection and recogni-
tion, and new robust methods for dimensionality
reduction.

Like most computer vision groups today, we
are making extensive use of deep learning. Un-
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like some groups, however, these tools have not
replaced modeling and optimization but have
augmented them. We are using convolutional
neural networks (CNNs) where they excel, on
problems like 2D human pose estimation and
semantic segmentation. For example, we lever-
age CNNs to improve results for estimating 3D
human pose and for semantic optical flow esti-
mation. The CNNs provide important cues that
are combined with generative models to achieve
novel results.

Following the approach of combining mod-
eling and learning, Perceiving Systems has de-
veloped world-leading models and methods in
optical flow estimation, human pose estimation,
motion capture, body shape modeling, and that
combine high-level scene understanding with
low-level vision. We are also at the forefront of
motor cortical decoding for neural prosthetics.
These projects are described below.

Context. Computer vision is changing rapidly
due to several simultaneous technological revo-
lutions and, while deep learning is the most visi-
ble, others may be even more important. Maybe
more significant are big datasets of images and
platforms that enable human labeling on a large
scale; these are key enablers of deep learning.
Less noticed, but no less important, is the revolu-
tion taking place in computer graphics with open
source gaming engines bringing high-quality ren-
dering to everyone. For the first time, genera-
tive models can be rendered in real time with
high quality for generating training data as well
as for performing inference. Additionally, we
have only just seen the beginnings of 3D scan-
ning with devices like Kinect. This technology
is poised to become widespread in consumer de-
vices in the next few years and will result in a
new data deluge, but one that we are less pre-
pared to deal with. The tools, technologies, data
structures, and algorithms for dealing with noisy,
incomplete, 3D scans of the world are far less
developed than techniques for image processing.
Likewise, 3D printing and virtual reality applica-
tions suggest that databases of 3D CAD models
are poised to expand.

The great leaps in deep learning have resulted
from category-level labeling, which is relatively
easy for humans. The labeling of metric proper-
ties of 3D scenes and objects will prove much
harder. This argues for the sensible use of gen-

erative models of the 3D world that can be fit to
relatively small amounts of training data and yet
have strong generalization ability. A key lesson
of current deep learning methods is that simple
models, that are easy to train, are often prefer-
able to more powerful models that are hard to
train. Future generative models will exploit this
insight to enable end-to-end training. The future
will also likely combine discriminative, bottom
up, pattern recognition methods with generative,
top down, models. This promises a return to the
early roots of computer vision but with new tools.
The successful vision systems of the next decade
are likely to build on, and embrace, all of these
trends rather than focus on any one of them.

This generative approach is at an inflection
point. New sensors and methods allow the cap-
ture of 3D objects, full 3D scenes, materials, and
even 4D shape (3D shape over time). Render-
ing engines are better, more realistic, and more
open than ever. Large datasets enable learning
of object and scene statistics. Deep networks
give new modeling tools to capture non-linear
properties of the world. The combination of gen-
erative models, data, and learning offers a path
to solving hard vision problems. Our approach is
highly interdisciplinary, integrating computer vi-
sion, machine learning, computer graphics, and
computational neuroscience.

Overview. Our approach can be summarized
as “model what you can and learn the rest.” As
an example, the distribution over the shapes of
different cars is something that is hard to write
down but can be learned. The projection of a car
shape into the image, the motion of the car on
the road, contact and interpenetration with other
objects, and the appearance under different light-
ing conditions are all physical things that are
relatively easy to model. We see this philosophy
of learning and modeling throughout our work.
Some examples:

Inverse rendering: A rendering engine takes
3D models, materials, and lighting and produces
images of the scene. The goal of inverse render-
ing is to turn this around and infer the 3D scene
that generated the image. To that end we have de-
veloped an approximate differentiable renderer
that efficiently does this when one is close to
the solution. We have also developed sampling
methods to deal with more complex scenes and
to represent distributions over solutions.
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Human body shape and motion: Humans
and animals have complex 3D shapes that vary
across individuals, with pose, and with motion.
Using 3D and 4D scans we learn the world’s
most accurate statistical models of detailed hu-
man body shape. We use inverse rendering to
then estimate human shape and pose from a vari-
ety of sources including mocap markers, RGB-D
sequences, images, and video.

Scene understanding: Scenes are composed
of objects with a spatial layout. We expect differ-
ent objects and different spatial relations in out-
door scenes, traffic scenes, homes, and offices.
Our goal is to combine semantic information
about scenes with 3D information about objects
to infer what objects are present, their shape, 3D
pose, and how they are moving.

Stereo and optical flow: Both stereo and op-
tical flow give important information about the
3D structure of the scene and the location of sur-
face boundaries. They are typically viewed as
low-level problems that provide this structural
information to higher-level processes. We take
a different view. Knowing something about the
scene and its objects can make stereo and flow
estimation easier. Consequently we formulate
these estimation problems jointly to describe im-
ages and sequences in terms of semantic primi-
tives and to leverage semantic segmentation.

Intrinsic images: Between image pixels and
the 3D world are intermediate representations
that are registered with the image but relate to the
physical world. Examples include depth, flow,
albedo, shading, object contours, cast shadows,
etc. Extracting these intermediate representa-
tions has long been a goal and is now becoming
feasible. By taking an integrated approach to es-
timating these intrinsic properties over time we
are able to extract fundamental physical proper-
ties of scenes from video.

History. Perceiving Systems began operations
in January 2011 with one employee (Black). We
have grown into a department with a steady-state
size of around 30 people including support staff,
technicians, students, and scientists at various
career stages. Already there are about 30 alumni
including six graduated Ph.D. students.

The department has several exceptional group
leaders including Juergen Gall (now a professor
in Bonn), Peter Gehler (Senior Research Scien-
tist), and Andreas Geiger (Research Scientist);
all of these are top young researchers in the field
of computer vision. Group leaders receive de-
partment funding and raise external funds to sup-
port their research. These group leaders indepen-
dently supervise Ph.D. students.

We have a highly active visitor program and
lecture series. We have had over 100 invited
speakers, including many of the leaders in the
field. A full list is here

https://ps.is.tuebingen.mpg.de/
talks

Sabbatical and long-term visitors include
Cordelia Schmid (INRIA), Stan Sclaroff (Boston
University), Niko Troje (Queen’s University),
and Garrett Stanley (Georgia Tech).

The department occupies temporary space, pri-
marily located in the first floor of the Magnetic
Resonance Center of the MPI for Biological Cy-
bernetics. Significant effort has gone into plan-
ning lab space in the new building to support our
research program.

Our main research themes are described be-
low, followed by more detailed project descrip-
tions that provide insight into how we translate
these themes into algorithms and solutions. The
work presented here is just a sampling of the re-
search in the department over our first five years
of operation. Our website provides all this in-
formation as well as many other projects and
greater detail

http://ps.is.tue.mpg.de

In addition, many of our videos are available on
the Youtube channel

https://www.youtube.com/user/
BlackAtBrown

Finally a broader view of the department activ-
ities, including more of the social life, can be
found on our Facebook page

https://www.facebook.com/
PerceivingSystems/
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Selected highlights (2011–2015):

2011. Middlebury Optical Flow benchmark paper published.
2011. Demonstrated human neural control of a cursor 1000 days after implantation.
2011. Demonstrated first decoding of point and click from human motor cortex.
2011. First method to estimate human shape from multiple Kinect RGB-D images.
2011. Best method for estimating intrinsic images using a global sparsity prior.

2012. Released the MPI-Sintel dataset for optical flow evaluation.
2012. World’s first high-speed body scanner, capturing the full range of human poses.
2012. Deformable parts models with 3D object geometry for object recognition.
2012. Coregistration method enables learning of body shape from a corpus of scans.
2012. Department’s first SIGGRAPH paper (on clothing shape and deformation).

2013. Spun out Body Labs Inc. with 2 million USD of angel funding.
2013. Release of JHMDB action recognition dataset.
2013. State of the art 2D human pose estimation with poselets.
2013. Demonstrated state-of-the-art optical flow estimation using layers.

2014. World’s first 4D body scanner, capturing 3D meshes at 60 fps.
2014. First learned model of human shape change during breathing.
2014. MoSh estimates human shape and detailed motion from standard markers.
2014. FAUST dataset for 3D mesh registration released.
2014. Released first method for robust PCA that scales to big data.

2015. Body Labs receives $8 million in venture funding; licenses new IP.
2015. SMPL body model released; compatible with standard graphics packages.
2015. Released KITTI 2015 dataset with ground truth non-rigid motions.
2015. Discrete optical flow achieves top performance on benchmarks.
2015. Joint estimation of high-level object models and low-level scene properties.
2015: Dyna the first realistic model of dynamic human shape in motion.

1.1.1 Human Pose

Since humans are often the subject of pho-
tographs, detecting them and analyzing their
pose is critical for image understanding. The pho-
tographic study of human pose and motion dates
from the late 1800’s with the work of Muybridge
and Marey. Our research continues this tradi-
tion but with new capture technology, advanced
graphics models of the body, new algorithms
for pose and shape estimation, machine learn-
ing methods, and quantitative analysis of human
motion and pose on ground-truth datasets.

In the first five years of Perceiving Systems we
have made significant progress towards automat-
ically estimating 2D human pose from images by
leveraging training datasets and machine learn-
ing methods. We also leverage our expertise in
optical flow estimation to extend 2D pose estima-
tion over time, resulting in increased accuracy.

Beyond 2D pose, we are pushing the technol-
ogy of "motion capture" in new directions. The
goal is always to leverage what we know about
bodies to get more from less - more accuracy
and more shape detail from a small number of
simple sensors. From 3D mocap markers, we
recover detailed shape, pose, and soft tissue mo-
tion. Using a single RGB-D sensor and a para-
metric model of the human body, we are able
to estimate human body shapes and poses from
complex sequences of unconstrained motion.

Our current work is pushing the state of the
art in monocular pose and motion capture to au-
tomatically go from 2D images or monocular
video to 3D pose and shape of the human body.
We are also expanding our research from track-
ing humans to tracking animals of many kinds.
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More information: https://ps.is.tuebingen.mpg.de/field/human-pose

1.1.2 Human Shape

Figure 1.1: Virtual Humans. SMPL is an example of a statistical body model that is learned from thousands of
scans of people. Unlike previous models, SMPL is compatible with existing game engines. Here many bodies are
rendered in motion by a common game engine

The human body is special. Most images
and videos depict humans, and understand-
ing humans is important for many problems
including human-computer interaction, video
retrieval, activity recognition, special effects,
sports medicine, etc. We take an approach that
leverages strong models to interpret ambiguous
sensor data. Such models express the statistics of
body shape and pose and allow the robust inte-
gration of measurements from different sources.
A model-based approach is particularly impor-
tant for the analysis of complex, articulated, and
non-rigid objects such as the body.

To that end we have built the most detailed and
accurate statistical models of 3D human body
shape to date. These models are learned from
over 4000 3D body scans of different people
and approximately 1800 scans capturing a wide
range of poses by people of many body shapes.

Additionally we learn models of soft tissue dy-
namics using 40,000 scans captured by a unique
full-body 4D body scanner that gives detailed
3D meshes at 60 fps.

Our latest SMPL body model is available for
research purposes, makes it easy to create any
human body shape, and allows the body to be
animated in standard game engines and graphics
software. The model is appropriate for use in
animation and computer vision.

Some of our current work addresses: learning
models of clothing in motion; modeling hands,
faces and bodies together; learning composi-
tional models of 3D shape; animal shape and
motion; estimating 3D shape from monocular
cues.

Impact. From its inception, Perceiving Sys-
tems has been working on commercializing
body shape modeling technology. An engineer-
ing team from Brown formed the first group of
employees in the department and they came to
Germany to make our technology ready for the
real world. After nearly two years of work, sev-
eral significant papers, and patenting activity, the
team spun off in 2013 into Body Labs Inc. The
company licensed technology from Brown and
Max Planck and in the fall of 2015 completed a
second round of licensing from MPI.

Located in New York City, Body Labs began
with angel funding and quickly built a base of
paying customers. In 2015 it closed a Series A
financing round with Intel Capital in the lead,
bringing total funding to approximately $10 mil-
lion dollars. At the same time Body Labs and
Intel announced a partnership to bring body scan-
ning and clothing sizing to consumers using In-
tel’s RealSense depth sensors.

More information can be found at the Body

Max Planck Institute for Intelligent Systems, Stuttgart · Tübingen | Research and Status Report 2010 – 2015 | Part I

https://ps.is.tuebingen.mpg.de/field/human-pose


81 Perceiving Systems
1.1 Research Overview

Labs website

http://www.bodylabs.com/

In addition to our commercialization efforts we
have made several websites available to users for
free. In particular we developed websites to help
people better understand their body shape and

how this shape relates to their body mass index,
or BMI. We have two websites, using different
visualization technology, that attract about one
million users a year

http://www.bodyvisualizer.com
http://www.bmivisualizer.com

More information: https://ps.is.tuebingen.mpg.de/field/shape

1.1.3 Stereo and Optical Flow

A fundamental problem in computer vision
is the reconstruction of the shape and motion of
the 3D world. This has applications as varied
as self-driving cars, 3D mapping, virtual reality,
graphics, and robotics. We think that reasoning
about the 3D world and its structure is at the
heart of computer vision.

To help push the field in new directions, we
have co-organized two workshops on Scenes
from Video that bring together researchers work-
ing on video, flow, and structure from motion
with researchers working on semantic scene anal-
ysis. The idea is that integration of these fields
(metric and semantic) will lead to improvements
in both.

Image Motion: Perceiving Systems is at the
forefront of research on optical flow; it is one of
our core competencies and our algorithms are
regularly at the top of the optical flow bench-
marks.

By optical flow we mean the projection of
the 3D motion field onto the image plane of the
camera. We focus on this (as opposed to appar-
ent motion) because this flow is related to the
structure of the 3D scene, the boundaries of ob-
jects, and the motion of the camera. Flow is an
important mediating representation (an intrinsic
image) that helps the analysis of scenes.

Optical flow has proven useful for problems
throughout computer vision, graphics, medical
imagining, robotics, and many application do-
mains. and while there are many reasons to com-
pute flow, the ones that interest us most are to

1. establish correspondence across time - this
enables reasoning across time, establishes
object permanence etc.;

2. to determine scene structure - what is rigid,
what isn’t, where the boundaries are, etc.

Open problems in the field include: dealing
with fast motion of small objects, modeling mo-
tion with complex material properties, reflec-
tions and transparency, dealing with motion blur,
accurately estimating flow at surface boundaries,
segmenting scenes into regions, and improving
accuracy and speed simultaneously.

Our current work is focused on combining the
estimation of flow with higher level scene analy-
sis, including combing flow with the estimation
of 3D objects and their motion and estimating
3D scene flow. Our most recent work combines
semantic scene segmentation with optical flow,
achieving state-of-the-art accuracy. We also are
using optical flow in many applications, includ-
ing human shape and motion analysis.

Scene Structure: Beyond motion, we study
the recovery and reconstruction of 3D struc-
ture from single images, RGB-D data, video se-
quences, stereo, and multi-view stereo.

Our major innovations lie in combining high-
level and semantic cues with low-level fea-
tures. We view the problem as the integration
of model fitting with dense structure recovery.
While much of our work has focused on object-
specific models like people and cars, we are par-
ticularly interested in generic representations and
compositional models of objects and scenes.

Increases in computing power, labeled train-
ing data, large databases of 3D CAD models, 3D
sensors, and open-source rendering engines, are
all opening new opportunities to model and infer
3D objects and scenes.

More information: https://ps.is.tuebingen.mpg.de/field/stereo-and-flow
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1.1.4 Vision as Inverse Graphics

Computer vision as analysis by synthesis has
a long tradition and remains central to a wide
class of generative methods. In this top-down
approach, vision is formulated as the search for
parameters of a model that is rendered to produce
an image (or features of an image), which is then
compared with image pixels (or features). The
model can take many forms of varying realism
but, when the model and rendering process are
designed to produce realistic images, this process
is often called inverse graphics. In a sense, the
approach tries to reverse-engineer the physical
process that produced an image of the world.

Recent advances in graphics hardware, open
source renderers, and probabilistic programming

is making this approach viable. We are address-
ing inverse rendering in multiple projects that
use autodifferentiation and stochastic sampling
to solve different aspects of the problem. For ex-
ample, the OpenDR framework is widely used in
much of our research on human body modeling.
It allows us to very quickly formulate a problem
and prototype a solution.

We also approach the problem from the "bot-
tom up"; that is, from images and videos we
extract intrinsic images, which represent physi-
cal properties of the scene tied to the pixel grid.
These provide a generative model of images (or
video) and can be used as an intermediate repre-
sentation between graphics models and images.

More information: https://ps.is.tuebingen.mpg.de/field/inverse-graphics

1.1.5 Learning & Inference

Figure 1.2: Statistics on manifolds. Left: body shape represented as deformations where the deformations lie on a
manifold. Right: transporting statistics on a manifold. Here we use the statistics of female shape to regularize the
shape of men using covariance transport.

Our work on learning is infused through our
projects and is typically grounded in specific
computer vision applications. We also work
on more generic learning problems. For exam-
ple, we have formulated the learning of 3D
shapes represented by triangle deformations (Lie
shapes) [108]. We show how such deformations
live on a manifold and how to model the statis-
tics on this manifold using principal geodesic
analysis.

Often good data about 3D object shape is
hard to come by. Consequently to learn 3D
shape models, it is useful to be able to trans-

fer shape knowledge from previously learned
shapes. When these shapes live on a manifold,
however, standard methods for domain transfer
do not apply. We show how to transfer statistics
on a manifold using parallel transport [79]. This
provides an efficient way to exploit the manifold
structure to improve learning of object shape
when very little data is available.

Often the manifold structure of the data is
not known a priori and we need to learn it. To
address this, multi-metric learning techniques
learn local metric tensors in different parts of a
feature space. The learned distance measure is,
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however, non-metric, which has prevented multi-
metric learning from generalizing to tasks such
as dimensionality reduction and regression in a
principled way. We prove that, with appropriate
changes, multi-metric learning corresponds to
learning the structure of a Riemannian manifold
[103]. We then show that this structure gives us a
principled way to perform dimensionality reduc-
tion and regression according to the learned met-
rics. Algorithmically, we provide the first practi-
cal algorithm for computing geodesics according
to the learned metrics, as well as algorithms for
computing exponential and logarithmic maps on
the Riemannian manifold. Together, these tools
let many Euclidean algorithms take advantage of
multi-metric learning.

Today learning is often applied to large
datasets labeled by humans or generated by al-
gorithms. In either case, we expect the num-
ber of outliers to increase with data size. While
principal component analysis (PCA) can reduce
data size, and scalable solutions exist, it is well-
known that outliers can arbitrarily corrupt the re-
sults. Unfortunately, state-of-the-art approaches
for robust PCA are not scalable. We note that in
a zero-mean dataset, each observation spans a
one-dimensional subspace, giving a point on the
Grassmann manifold. We use this insight to com-
pute PCA by computing average subspaces. Be-
cause averages can be efficiently computed, we
immediately gain scalability. We exploit robust

averaging to formulate the Robust Grassmann
Average (RGA) as a form of robust PCA [7]. Our
algorithm has linear computational complexity
and minimal memory requirements.

Our work on inference is grounded in prob-
ability and exploits graphical models, belief
propagation, and stochastic sampling to name
just a few methods. In most problems that we
care about, the variables of interest are con-
tinuous and high dimensional. Specifically, we
developed a particle-based max-product algo-
rithm which maintains a diverse set of posterior
mode hypotheses, and is robust to initialization
[75]. At each iteration, the set of hypotheses at
each node is augmented via stochastic propos-
als, and then reduced via an efficient selection
algorithm. The integer program underlying our
optimization-based particle selection minimizes
errors in subsequent max-product message up-
dates. This objective automatically encourages
diversity in the maintained hypotheses, without
requiring tuning of application-specific distances
among hypotheses. By avoiding the stochastic re-
sampling steps underlying particle sum-product
algorithms, we also avoid common degeneracies
where particles collapse onto a single hypothesis.
Our approach significantly outperforms previous
particle-based algorithms in experiments focus-
ing on the estimation of human pose from single
images.

More information: https://ps.is.tuebingen.mpg.de/field/learning-inference

1.1.6 Understanding Objects and Scenes

Object and scene understanding involves fig-
uring out, at the very least, what is in an image
and where things are. Moreover we want to know
information about the scene and how objects in
it are spatially related. The dominant paradigms
treat this as primarily a pattern recognition prob-
lem that involves learning some filter-based rep-
resentation of images that makes the detection
and classification problem easier. In contrast, our
work on recognition often brings in 3D knowl-
edge about objects in a variety of ways.

Our work addresses:

• object modeling
• object detection
• object recognition

• scene understanding
• scene segmentation
• humans interacting with objects
• machine learning methods
• statistical modeling of scene prop-
erties
• geometric models and reasoning.

Scene understanding, in contrast to object
recognition, attempts to analyze objects in con-
text with respect to the 3D structure of the scene,
its layout, and the spatial, functional, and seman-
tic relationships between objects. Our research in
this area combines object detection/recognition
with 3D reconstruction and spatial reasoning.
We believe that the integrated analysis of low-
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level image features, together with high-level se-
mantic and 3D object models, will enable robust
scene understanding in complex and ambiguous

environments and will provide the foundation
for further reasoning.

More information: https://ps.is.tuebingen.mpg.de/field/understanding-objects-and-scenes

1.1.7 Datasets & Evaluation

Datasets with ground truth have driven many
of the recent advances in computer vision. They
allow evaluation and comparison so the field
knows what works. They also provide training
data to machine learning methods that are hungry
for data. Creating good datasets that are valuable
to the community and have a reasonable lifes-
pan is hard work. Key issues are the quality and
quantity of the data, how well that data addresses
a specific problem in the field, and whether it is
well curated with a good evaluation.

We have played central roles in many influen-
tial datasets and evaluations in the field including

• Middlebury flow dataset
• MPI-Sintel datasets
• KITTI datasets

• HumanEva for human pose esti-
mation
• FAUST for 3D mesh registration
• JHMDB for action recognition
• MPI-I human pose dataset.

Note that Perceiving Systems is involved in
all three of the standard benchmarks in optical
flow (Middlebury, KITTI, and Sintel).

We are committed to releasing data whenever
possible including

• Dyna: 40,000 4D human body
scans
• Motion capture of extreme human
poses.

More information: https://ps.is.tuebingen.mpg.de/field/datasets-evaluation

1.1.8 Computational Neuroscience

Figure 1.3: Decoding walking. The motion of the front leg of a monkey walking on a treadmill is shown [116]. The
raster plot show the neural firing activity from a population of motor cortical neurons. The color coding corresponds
to different phases of the walk cycle, which can be decoded from the neural firing rates.

While most of our work is on computer vision,
we are also interested in how brains solve prob-
lems in vision and motor control. For example
we have shown how the synchronous firing of
cells in LGN with highly overlapping receptive

fields can code information about optical flow
[32].

Most of our work in computational neuro-
science, however, is focused on movement. We
do not just care about how people and their ac-
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tions appear in image sequences – we care about
how they move. We take a somewhat radical
view, that to understand movement in images, it
is useful to understand how motor systems pro-
duce movement. The majority of work in basic
motor neurophysiology, however, focuses on mo-
tor control in highly constrained scenarios. We
argue that such scenarios lead to overly simplis-
tic models. To go beyond this, the science of
motor control must be studied in natural settings.
We take a novel approach that marries computer
vision with motor neurophysiology.

We seek insight about how the brain controls
natural behavior in natural environments. To that
end we study

• motion capture of natural behav-
ior
• modeling motor cortical activity
during natural behavior
• developing new neural decoding
algorithms
• applying our models to brain
machine interfaces with implanted
electrocortical arrays.

In collaboration with researchers at Brown
University, we were the first to decode motor
cortical signals from the human brain using an
implanted microelectrode array and turn these

signals into a viable computer control system.
We demonstrated the first point and click system
that could decode both intended cursor move-
ment and a “click” signal from the same neural
population. We also demonstrated the viability
of such systems in humans by showing human
neural cursor control at over 1000 days post im-
plantation.

To go further we need a richer understanding
of how the brain controls movement and for that
we need to observe and model the neural control
of animal movement in much more complex and
natural settings than previously seen. To that end,
our current work focuses on markerless animal
motion capture.

We are just at the beginning of our ability to
capture animal motion. Our current work is fo-
cused on learning models of animal shape and
motion that are similar in quality to our models
of humans. This is a challenging task. Unlike hu-
mans, it will be impossible to capture 3D scans
of thousands of animals of varying shape in a
wide variety of poses. To build such models we
are using heterogenous sources of data of vary-
ing quality and are developing new models and
algorithms to learn high quality 3D models from
this data. While this presents many challenges,
the ability to track animals (and groups of an-
imals) in natural settings would revolutionize
many fields of biology.

More information: https://ps.is.tuebingen.mpg.de/field/computational-neuroscience
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2D Pose from Images

Peter Gehler, Javier Romero, Silvia Zuffi, Martin Kiefel, Jürgen Gall, Michael Black

Figure 1.4: Top row: Poselets are used to condition a pictorial structures model, providing more contextual
information, while maintaining efficient pose inference [90, 97]. Middle row: The Fields of Parts model reformulates
pose using a binary variable for every possible part location, orientation and scale [70]. Bottom row: The deformable
structures model [121] contains information about 2D body shape and how it varies with pose. Inference uses a
new non-parametric belief propagation algorithm [75].

Estimating 2D human pose is hard because
people appear in a wide range of poses and have
varying body shape. They wear varied clothing
and the articulation results in significant self oc-
clusion. We have developed several state-of-the-
art methods to address these problems.

Poselets [90, 97] capture how human motions
and activities simultaneously constrain the po-
sitions of multiple body parts. Our model in-
corporates higher-order part dependencies while
retaining efficient inference. We achieve this
by defining a conditional model in which all
body parts are connected a-priori, but which be-
comes a tractable tree-structured pictorial struc-
ture model given image observations. In order to
derive a set of conditioning variables we exploit
the poselet-based features that capture extended
spatial information about pose.

Our Fields of Parts model [70] reformulates
the problem as a binary Conditional Random
Field that models local appearance and joint spa-
tial configuration of the human body. Using a
novel graph structure, we model the presence and

absence of a body part at every possible position,
orientation, and scale in an image with a binary
random variable; this encodes the same appear-
ance and spatial structure as Pictorial Structures.
While the formulation results into a vast number
of random variables, approximate inference is ef-
ficient. Fields of Parts can use evidence from the
background, include local color information, and
it is connected more densely than a kinematic
chain structure.

Like pictorial structures, these models lack
an explicit model of body shape. We learn a de-
formable structures body model that captures
body shape and how it deforms with pose in
2D [121]. The DS image likelihoods explicitly
model image information at the boundaries of
body parts, simplifying learning. The model is
not much more complex than previous models
but results in improved accuracy. Inference uses
a new non-parametric method for max-product
belief propagation that preserves particle diver-
sity, models uncertainty, and estimates the pose
of multiple bodies simultaneously [75].

More information: https://ps.is.tuebingen.mpg.de/project/people-from-images
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2D Pose from Optical Flow

Michael Black, Javier Romero, Matthew Loper, Silvia Zuffi, Cordelia Schmid, Hueihan Jhuang

Figure 1.5: Top row: Flowing puppets. (a) Frame with a hypothesized human “puppet” model. (b) Dense flow
between frame (a) and its neighboring frames. (c) The flow of the puppet is approximated by a part-based affine
model. (d) Prediction of the puppet from (a) into the adjacent frames using the estimated flow. Bottom Row: FlowCap.
(a) Example frame from a video sequence shot with a phone camera. (b) Optical flow. (c) Per-pixel part assignments
based on flow with overlaid uncertainty ellipses (red). (d) Predicted 2D part centroids connected in a tree.

Much of the work on human pose estimation
focuses on still images. We argue that there is
much to be gained by looking at video sequences
and, specifically, using optical flow. Flow tells
us what goes with what over time. This allows
the temporal propagation of information, which
can reduce uncertainty in pose estimation. Flow
also provides strong cues about objects in the
scene, their boundaries, and how they move. We
find that optical flow algorithms are now good
enough to play an important role in human pose
estimation.

Inferring pose over a video sequence is ad-
vantageous because poses of people in adjacent
frames exhibit properties of smooth variation
due to the nature of human and camera motion.
Here we make a simple observation: Information
about how a person moves from frame to frame
is present in the optical flow field. We develop
an approach for tracking articulated motions that
"links" articulated shape models of people in ad-
jacent frames trough the dense optical flow [91].
Key to this approach is a 2D shape model of
the body [121] that we use to compute how the

body moves over time. The resulting "flowing
puppets" integrate image evidence across frames
to improve pose inference.

Dense optical flow provides information about
2D body pose [48]. Like range data, flow is
largely invariant to appearance but unlike depth it
can be directly computed from monocular video.
We demonstrate that body parts can be detected
from dense flow alone using the same random
forest approach used by the Microsoft Kinect.
Unlike range data, when people stop moving,
there is no optical flow and they effectively disap-
pear. To address this, our FlowCap method uses
a Kalman filter to propagate body part positions
and velocities over time and a regression method
to predict 2D body pose from part centers from
only monocular video of people moving.

Finally in [87] we explore the importance
of optical flow for human activity recognition.
We create a novel dataset of complex video se-
quences with ground truth 2D pose and flow us-
ing our deformable structures model [121]. We
find that optical flow can play an important role
in human action recognition.

More information: https://ps.is.tuebingen.mpg.de/project/pose-from-flow
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Beyond Motion Capture

Javier Romero, Naureen Mahmood, Matthew Loper, Federica Bogo, Alex Weiss, Michael Black

Figure 1.6: We use a parametric body model to estimate accurate body shape, pose and appearance, and even to
extract soft-tissue deformations from incomplete, noisy 3D data. Left: we show a sequence of monocular RGB-D
frames from Kinect (top row, Kinect skeleton in red) and our model, estimated from the frames (bottom row). Right:
MoSh computes body shape and pose from standard mocap marker sets (green = 3D scan, purple = estimated
body shape and pose).

Accurately capturing human body shape and
motion is important for many applications in
computer vision and graphics. Traditional mo-
tion capture (mocap) focuses on extracting a
skeleton from a sparse set of markers. Our work
pushes the boundaries of motion capture to use
new sensors and to extract richer information
about body shape and human movement.

Traditional mocap uses a set of sparse markers
placed on the body to estimate skeleton motion.
These markers are typically placed on parts of
the body that move rigidly to try to minimize
the effects of soft tissue motion. In this process
nuanced information about surface motion is lost
and animations using mocap often feel lifeless
or eerie. MoSh (Motion and Shape capture) [15]
addresses this problem by directly estimating
a 3D parametric body model from 3D markers.
Given a standard marker set, MoSh simultane-
ously estimates the marker locations on the 3D
model and recovers body shape and pose. By

allowing body shape to vary over time, MoSh
can also capture the non-rigid motion of soft tis-
sue. From a small set of markers MoSh is able
to recover a remarkably accurate 3D model of
the body. The motions can then be retargetting
to new characters, resulting in realistic, lifelike,
animations.

In comparison with mocap, consumer RGB-D
devices provide denser observations of the body,
but these scans are incomplete (taken from a sin-
gle view) and noisy. By using RGB-D sequences
of bodies in motion, we can extract more detailed
information about body shape and motion [42].
To do so, we introduce a multi-resolution body
model and exploit time continuity of human mo-
tion and RGB appearance to estimate accurate
body shape, pose and appearance. The approach
can track arbitrary challenging motions, and ex-
tracts highly realistic 3D textured avatars with
an accuracy rivaling high-cost laser scanners.

More information: https://ps.is.tuebingen.mpg.de/project/beyond-mocap
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Multi-Camera Capture

Michael Black, Jürgen Gall, Gerard Pons-Moll

Figure 1.7: Top row: (left) In [35], bodies are represented by a part-based graphical model in space and time.
(middle) Messages between parts are represented by particles. (right) Non-parametric belief propagation computes
message products. Bottom row: In [29], we segment and fit bodies multi-camera images. (a) Articulated template
models. (b) Input silhouettes. (c) Segmentation. (d) Contour labels assigned to each person. (e) Estimated surface.
(f) Estimated 3D models with embedded skeletons.

While multi-camera video data facilitates
markerless motion capture, many challenges re-
main.

We formulate the problem of 3D human pose
estimation and tracking as inference in a graph-
ical model [35]. The body is modeled as a col-
lection of loosely-connected body-parts (a 3D
pictorial structure) using an undirected graphical
model in which nodes correspond to parts and
edges to kinematic, penetration, and temporal
constraints. These constraints are encoded using
pair-wise statistical distributions, learned from
mocap data. Human pose and motion are com-
puted using Particle Message Passing, a form
of non-parametric belief propagation that can
be applied over graphical models with loops.
The loose-limbed model and decentralized graph
structure allow us to incorporate "bottom-up"
visual cues, such as limb and head detectors into
the inference process. These detectors enable
automatic initialization and aid recovery from
transient tracking failures.

Capturing the skeleton motion and detailed
time-varying surface geometry of multiple,
closely interacting persons is harder still, even
in a multi-camera setup, due to frequent occlu-
sions and ambiguities in feature-to-person as-
signments. To address this, we propose a frame-
work that exploits multi-view image segmenta-
tion [29]. To this end, a probabilistic shape and
appearance model is employed to segment the
input images and to assign each pixel uniquely
to one person. Given the articulated template
models of each person and the labeled pixels, a
combined optimization scheme, which splits the
skeleton pose optimization problem into a local
one and a lower dimensional global one, is ap-
plied one-by-one to each individual, followed by
surface estimation to capture detailed non-rigid
deformations. Our approach can capture the 3D
motion of humans accurately even if they move
rapidly, wear apparel, and engage in challenging
multi-person motions.

More information: https://ps.is.tuebingen.mpg.de/project/multi-camera-capture
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Pose and Motion Priors

Peter Gehler, Andreas Lehrmann, Ijaz Akhter, Gerard Pons-Moll, Søren Hauberg, Jürgen Gall, Michael Black

Figure 1.8: Top row: Representation of a human pose as a Bayesian network with optimal tree-structured topology
and non-parametric local distributions [89]. Middle row: Markov model from [84] interpolates human pose realsitically.
Bottom row: (left) Distance metric based on a manifold in joint space [104]. (right) New motion capture dataset of
extreme poses [56].

A prior over human pose is important for
many human tracking and pose estimation prob-
lems.

We introduce a sparse Bayesian network
model of human pose that is non-parametric with
respect to the estimation of both its graph struc-
ture and its local distributions [89]. Using an effi-
cient sampling scheme, we tractably compute ex-
act log-likelihoods. The model is compositional,
representing poses not present in the training set.
It remains useful for real-time inference despite
being non-parametric.

Action recognition and pose estimation are
closely related topics; information from one task
can be leveraged to assist the other, yet the two
are often treated separately. In [34] we develop
a framework for coupled action recognition and
pose estimation by formulating pose estimation
as an optimization over a set of action-specific
manifolds. The framework allows for integration

of a 2D appearance-based action recognition sys-
tem as a prior for 3D pose estimation and for
refinement of the action labels using relational
pose features based on the extracted 3D poses.

Modeling distributions over human poses re-
quires a distance measure between human poses;
this is often taken to be the Euclidean distance
between joint angle vectors. In [104] we present
an algorithm for computing geodesics in the Rie-
mannian space of joint positions, as well as a
fast approximation that allows for large-scale
analysis. Articulated tracking systems can be im-
proved by replacing the standard distance with
the geodesic distance in the space of joint posi-
tions. This measure significantly outperforms the
traditional measure in classification, clustering
and dimensionality reduction tasks.

To better model human pose we collected a
new motion capture dataset of extreme poses
[56] that is available to the public.

More information: https://ps.is.tuebingen.mpg.de/project/pose-and-motion-priors
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Hands in Action

Dimitris Tzionas, Jürgen Gall, Javier Romero, L. Ballan, A. Taneja, L. Van Gool, M. Pollefeys, Michael Black

Figure 1.9: (top) Capturing the motion of two hands interacting with an object. A. Mesh models (blue) and underlying
bone skeletons (red) are used to represent the hands in the scene. B. One frame of a sequence where two hands
are interacting with a ball. This sequence consists of a total of 73 degrees of freedom and has been captured by 8
synchronized cameras. C. Estimated poses of the hands and the ball superimposed on two different camera views.
(bottom) Examples from a database of 3D hand scans.

Capturing the motion of hands is a very
challenging computer vision problem that is
also highly relevant for other areas like com-
puter graphics, human-computer interfaces, or
robotics.

We focus on hands that interact with other
hands or objects and develop a framework that
successfully captures motion in such interac-
tion scenarios for both rigid and articulated ob-
jects [112]. Our framework combines a genera-
tive model with discriminatively trained salient
points and collision detection to achieve a low
tracking error and physically plausible poses
even in case of occlusions and missing visual
data. Our approach captures hand motion using
either a single RGB-D camera or multiple syn-
chronized RGB cameras.

The captured hand motion can be used to im-
prove the reconstruction of hand-sized objects

that are manipulated in front of a RGB-D camera.
Instead of discarding the hands, we developed a
framework that uses the captured hand motion
together with texture and geometric features for
object reconstruction [41]. Since the hand mo-
tion provides additional information about the
object motion, we can reconstruct even texture-
less and symmetric objects.

Our current work is focused on modeling hand
shape and pose across many people, on estimat-
ing hands and their pose from low-resolution
data, and on estimating hands and bodies to-
gether. To that end, we have collected a large
dataset of hands of various subjects in a wide
range of poses that include object interaction.
From this we are building a statistical model
of hand shape using the same approach as our
SMPL body model.

More information: https://ps.is.tuebingen.mpg.de/project/hands-in-action
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3D Mesh Registration

Matthew Loper, Javier Romero, Federica Bogo, Aggeliki Tsoli, David Hirshberg, Eric Rachlin, Alex Weiss, Gerard

Pons-Moll, Michael Black

Figure 1.10: Registering a corpus of 3D body scans involves bringing a template mesh into alignment with each
scan. (top) Example registrations from CAESAR of widely different body shapes. (bottom) Example of pose variation
from FAUST with high-frequency texture pattern.

Statistical shape models enable the inference
of object shape from incomplete, noisy, ambigu-
ous 2D or 3D data. Training such models re-
quires precisely registering a corpus of 3D scans
with a common 3D template.

Registering a template mesh to 3D scans is
challenging [123]. Scans may have noise, holes,
and self contact while objects like the human
body deform in complex non-rigid ways. Reg-
istration is ill-posed and solutions typically use
generic regularizers to penalize implausible tem-
plate deformations. Instead we wish to penalize
deformations from a model of body shape. Con-
structing such a model, however, requires having
a registered corpus of scans.

We solve this chicken-and-egg problem by
performing modeling and registration together.
Coregistration [102] registers a corpus of scans
and simultaneously learns a parametric model
of human body shape and pose by minimizing
a single objective function. The model greatly
improves robustness to noise and missing data.

Since it explains a corpus, it captures how body
shape varies across people and poses. This is the
key to accurate body shape modeling.

Using coregistration we have registered a tem-
plate mesh with 7000 vertices to the 4000 bodies
in the CAESAR dataset. We think this is the most
accurate and detailed registration of CAESAR
to date. Using our model we pose-normalize the
meshes enabling us to learn a vertex-based statis-
tical model that is independent of pose variation
in the dataset [9].

Geometry alone is ambiguous in smooth re-
gions and results in registrations that slide along
the surface. To address this, we extend coregis-
tration to use both geometry and surface color
[77]. Our approach estimates scene lighting and
surface albedo to construct a high-resolution tex-
tured 3D model. This model is robustly brought
into registration with multi-camera image data.
We build our statistics shape models from about
1800 scans of 60 people. Some of this data is
publicly available in the FAUST dataset.

More information: https://ps.is.tuebingen.mpg.de/project/3d-mesh-registration

Max Planck Institute for Intelligent Systems, Stuttgart · Tübingen | Research and Status Report 2010 – 2015 | Part I

https://ps.is.tuebingen.mpg.de/project/3d-mesh-registration


211 Perceiving Systems
1.2 Research Projects

4D Shape

Gerard Pons-Moll, Javier Romero, Naureen Mahmood, Matthew Loper, Aggeliki Tsoli, Michael Black

Figure 1.11: We use a novel 4D full-body scanner with 66 cameras to capture body shapes in motion. We register
a template to these scans in a process called 4Cap (4D motion capture). Given non-rigid deformations from our
standard body models, we learn statistics of soft tissue dynamics [12] or breathing deformations [18].

Human bodies are dynamic; they deform as
they move, jiggle due to soft-tissue dynamics,
and change shape with respiration. In [18] we
learn a model of body shape deformations due
to breathing for different breathing types and
provide simple animation controls to render life-
like breathing regardless of body shape. Using
3D scans of 58 human subjects, we augment a
SCAPE model to include breathing shape change
for different genders, body shapes, and breathing
types.

Current 3D scanners capture only static bodies
with high spatial resolution while mocap systems
only capture a sparse set of 3D points at high
temporal resolution. To better understand how
people deform as they move, we need both high
spatial and temporal resolution. To that end we
commissioned the world’s first 4D scanner that
captures detailed full body shape at 60 frames
per second. This 4D output, however, is simply a

sequence of point clouds. To model the statistics
of human shape in motion, we first register a
common template mesh to each sequence in a
process we call 4Cap [12].

Using over 40,000 registered meshes of ten
subjects, we learn how soft- tissue motion causes
mesh triangles to deform relative to a base 3D
body model [12]. The resulting Dyna model uses
a second-order auto-regressive model that pre-
dicts soft-tissue deformations based on previous
deformations, the velocity and acceleration of
the body, and the angular velocities and accel-
erations of the limbs. Dyna also models how
deformations vary with a person’s body mass in-
dex (BMI), producing different deformations for
people with different shapes. We provide tools
for animators to modify the deformations and
apply them to new stylized characters. We have
also ported this model to our vertex-based SMPL
model [9].

More information: https://ps.is.tuebingen.mpg.de/project/4d-shape
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Virtual Humans

Michael Black, Javier Romero, Matthew Loper, Gerard Pons-Moll, Naureen Mahmood, Federica Bogo

Figure 1.12: Top: The SMPL body model uses a template shape, blend weights, a function to predict joint locations
from shape, shape blend shapes to change identity, pose blend shapes to correct for pose deformations, and
dynamic blend shapes to capture soft-tissue dynamics. All these are learned from data and fit scan data more
accurately than SCAPE (bottom left: scans in gray, SMPL in copper). (bottom right) We can retarget pose and
soft-tissue dynamics to new characters.

The human body is certainly central to our
lives and is commonly depicted in images and
video. We are developing the world’s most real-
istic models of the body by learning their shape
and how they move from data. Our goal is to
make 3D models of the body look and move in
ways that make them indistinguishable from real
humans. Such virtual humans can be used in spe-
cial effects and will play an important role in
emerging virtual reality systems. They can also
be used in computer vision to generate training
data for learning methods or can be fit directly
to sensor data. What makes this hard is that the
human body is highly articulated, deforms with
kinematic changes, and exhibits large shape vari-
ability across subjects.

Over the last five years we have developed
a series of 3D body models that can be used
for both graphics and vision: BlendSCAPE

[102], Delta [42], Dyna [12] and finally SMPL
[9]. In particular, SMPL is a realistic human
body model that is more accurate than previ-
ous SCAPE models yet is based on standard
blend skinning and blend shapes. Pose blend
shapes correct blend-skinning artifacts and are
driven by elements of the body part rotation ma-
trices. Shape blend shapes capture how body
shape varies across people; these are computed
using pose normalized 3D scans of 4000 people.
Dynamic blend shapes capture how soft tissue
deforms with motion.

The simplicity of our formulation means that
SMPL can be trained from large amounts of data.
It also means that it is compatible with current
game engines and graphics software, running
much faster than real time. The model is licensed
commercially to Body Labs Inc. and is made
freely available for research purposes.

More information: https://ps.is.tuebingen.mpg.de/project/virtual-humans
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Part-based Body Models

Silvia Zuffi, Javier Romero, E. Sudderth, S. Ghosh, J. Pacheco, L. Sigal, Michael Black

Figure 1.13: Left (top): Graphical structure of the body. (bottom) 3D parts. Right: 2D Deformable Structure model
(top row), 3D Stitched Puppet model (middle row), model alignment to data exploiting the part-based representation
(bottom row).

Human pose and shape estimation can be seen
as a proxy for a wide range of problems in ob-
ject representation and recognition. Humans are
complex and articulated, appear in images in a
variety of clothing, and come in a wide range of
shapes. Teaching computers to understand peo-
ple and their movements in images and videos
is a great challenge of computer vision with
manifold applications in entertainment, human-
computer interaction, web search, medicine, and
autonomous vehicles.

Most of the existing methods for human pose
detection and tracking are based on part-based
models, where the human body is represented as
a set of "boxes" in two-dimensions (2D) or sim-
ple geometric primitives like cylinders or cones
in three dimensions (3D) [35]. These models
map to probabilistic generative models where
each body part is represented with a node in a
graph, and edges represent connections between
parts. Efficient inference for the models’ param-
eters given data can be performed with message
passing algorithms.

Traditional part-based models cannot reach

the level of realism of global models, as they
do not represent body shape deformations with
pose. Moreover they do not parameterize intrin-
sic body shape, and have been only used so far
to estimate body pose.

We have introduced part-based models that
are parameterized for body pose and shape. The
Deformable Structures model (DS) [121] is a 2D
model that is able to generate contours of hu-
man bodies with pose-dependent deformations.
The Stitched Puppet model (SP) [54] is a 3D
model that can generate body meshes with differ-
ent pose and intrinsic shape, and realistic pose-
dependent deformations. We have also learned
the part segmenation from scans [101].

These models live in a higher dimensional
space compared with models that do not repre-
sent shape. Furthermore, these shape parameters
are represented by continuous random variables.
To make inference practical in graphical mod-
els with high-dimensional continous parameters,
we use a new particle-based belief propagation
algorithm that mantains particle diversity [75].

More information: https://ps.is.tuebingen.mpg.de/project/part-based-body-models
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Bodies from RGB-D

Federica Bogo, Javier Romero, Alex Weiss, David Hirshberg, Matthew Loper, Michael Black

Figure 1.14: We accurately estimate the 3D geometry and appearance of the human body from a monocular RGB-D
sequence of a user moving freely in front of the sensor. Our approach proceeds in a coarse-to-fine manner. Given a
monocular sequence (background), we estimate a low-dimensional parametric model of body shape (left), detailed
3D shape (middle), and a high-resolution texture map (right).

Accurate 3D body shape and appearance cap-
ture is useful for applications ranging from
special effects, to fashion, to medicine. High-
resolution scanners can capture human body
shape and texture in great detail but these are
bulky and expensive. In contrast, inexpensive
RGB-D sensors are proliferating but are of much
lower resolution. Scanning a full body from mul-
tiple partial views requires that the subject stands
still or that the system precisely registers deform-
ing point clouds captured from a non-rigid and
articulated body.

We developed the first method to estimate hu-
man body shape from Kinect data [125, 129].
The approach fits a body model to depth and im-
age silhouettes to estimate body shape and pose
from static scans of a subject in one or more
static poses. We have since improved this greatly
and our latest method estimates body shape with
the realism of a high-resolution body scanner by
allowing a user to move freely in front of a single
commodity RGB-D sensor [42]

To achieve this, we develop a new parametric
3D body model, Delta, that is based on SCAPE
but contains several important innovations. First,

we define a parametric shape model at multi-
ple resolutions that enables the estimation of
body shape and pose in a coarse-to-fine pro-
cess. Second, we define a variable-detail shape
model that models facial shape with higher detail
than body shape; this is important for realistic
avatars. Third, we combine a relatively-low poly-
gon count mesh with a high-resolution displace-
ment map to capture realistic shape details, and
a high-resolution texture map estimated from the
sequence.

We bring color and range data in each frame
into alignment with our body model adopting
a coarse-to-fine approach. The method exploits
geometry and image texture over time to obtain
accurate shape, pose, and appearance informa-
tion despite unconstrained motion, partial views,
varying resolution, occlusion, and soft tissue de-
formation.

Our recovered models are competitive with
high-resolution scans from a professional 3D
scanning system. Our system creates accurate
3D avatars from challenging motion sequences
and even captures soft tissue dynamics.

More information: https://ps.is.tuebingen.mpg.de/project/bodies-from-rgbd

Max Planck Institute for Intelligent Systems, Stuttgart · Tübingen | Research and Status Report 2010 – 2015 | Part I

https://ps.is.tuebingen.mpg.de/project/bodies-from-rgbd


251 Perceiving Systems
1.2 Research Projects

Body Perception

Betty Mohler, Stephan Streuber, Alejandra Quiros-Ramirez, Anne Thaler, Javier Romero, Michael Black

Figure 1.15: Top: Given scans of a person (left) we construct a 3D avatar and then change the shape of the avatar
while keeping the identity fixed (middle). Subjects view their avatar in a virtual mirror and have to judge whether it is
their body shape. Middle: We find that both pose and body shape effect the perception of social "power". Bottom:
We study what makes avatars appealing by taking real bodies and making them more like cartoon characters. The
most appealing bodies are neither fully real or fully cartoons.

We create virtual avatars from full body 3D
scans and then manipulate body shape, pose,
and appearance to create realistic stimuli for the
study of the human perception of body shape.

We created personalized avatars and varied
their weight to investigate the relative impor-
tance of visual cues (shape and texture) on the
ability to accurately perceive own current body
weight [17]. Participants perceived their body
weight veridically when they saw their own
photo-realistic texture and significantly under-
estimated their body weight when the avatar had
a checkerboard texture.

Body shape and pose influence the perception
of physical strength and social power of male
virtual characters [46]. The perception of physi-
cal strength was mainly driven by the shape of

the body, while the social attribute of power was
influenced by an interaction between pose and
shape. The effect of pose on power ratings was
greater for weak body shapes; a character with a
weak shape can be perceived as more powerful
when in a high-power pose.

To study the "uncanny valley" we use car-
toon body styles derived from popular charac-
ters and present a method to stylize the body
shape and color of realistic avatars [39]. In per-
ceptual studies we found that partially stylized
body shapes result in increased perceived appeal.
Avatars with high stylization or no stylization at
all were rated to have the least appeal.

Our ongoing work is focused on body shape
perception in patients with anorexia.

More information: https://ps.is.tuebingen.mpg.de/project/body-perception
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Dense Optical Flow

Jonas Wulff, Laura Sevilla, Moritz Menze, D. Sun, Andreas Geiger, Michael Black

Figure 1.16: Top row: Results of discrete flow [49] on MPI-Sintel. Bottom row: PCA flow and PCA-layers [55] balance
speed with accuracy, producing accurate flow efficiently without a GPU (right).

While the accuracy of optical flow estimation
has increased markedly, a number of problems
remain, most notably the treatment of motion
and image boundaries, the tracking of fast but
small/thin objects, and the computational com-
plexity of current methods.

In [21], we comprehensively analyze the
lessons the field has learned in the past decades.
We systematically evaluate techniques to find
out what really works. We observe that tradi-
tional formulations can achieve competitive per-
formance when implmented using modern prac-
tices. Moreover we find that image-mediated spa-
tial smoothing is critical to accuracy and formu-
late the prevailing ad hoc approach as a princi-
pled objective function.

In [64] we address the problem of small ob-
jects that move more than their own spatial ex-
tent. While large displacements are usually cap-
tured using an image pyramid, this blurs over
small objects, making their motion untrackable.
To address this we replace images with Distri-
bution Fields, which allow the use of spatial
pyramids to capture large motions while preserv-
ing high-frequency spatial detail, allowing us to

track small objects over large displacements.

In [49] we use discrete optimization to es-
timate optical flow. As naive discretization of
the 2D flow space is intractable, we investigate
three different strategies, which are able to re-
duce computation and memory demands by sev-
eral orders of magnitude. Their combination al-
lows us to estimate large-displacement optical
flow both accurately and efficiently, attaining
state-of-the-art performance.

PCA-Flow [55] takes a non-standard approach
to compute optical flow efficiently. Instead of
modelling the motion of each pixel as a variable,
we treat the full optical flow field as a datapoint
in a 500-dimensional subspace, the structure of
which is learned from 8 hours of movie data.
Computing an optical flow field then becomes
equivalent to finding a point in this subspace.
This allows us to rapidly compute an approxi-
mate, smooth flow field, which can then serve as
a building block for other applications, such as
layered optical flow. PCA flow is the fastest non-
GPU flow method obtaining peformance better
than methods like Classic+NL and LDOF.

More information: https://ps.is.tuebingen.mpg.de/project/dense-optical-flow
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Layered Optical Flow

Jonas Wulff, D. Sun, Michael Black

Figure 1.17: Top row: From a sequence of images (a), we extract the layer assignments (b) and compute highly
accurate flow (c), especially at motion boundaries. Bottom row: Using a layered model, a motion-blurred sequence
(d) can be decomposed into foreground (e) and background (f), which can then be separately deblurred.

Layered models allow scene segmentation and
motion estimation to be formulated together and
to inform one another. They separate the problem
of enforcing spatial smoothness of motion within
objects from the problem of estimating motion
discontinuities at surface boundaries. Further-
more, layers define a depth ordering, allowing
us to reason about occlusions.

In [120], we present an optical flow algorithm
that segments the scene into layers, estimates
the number of layers, and reason about their rel-
ative depth ordering using a novel discrete ap-
proximation of the continuous objective in terms
of a sequence of depth-ordered MRFs and ex-
tended graph-cut optimization methods. We ex-
tend layer flow estimation over time, enforcing
temporal coherence on the layer segmentation
and show that this improves accuracy at motion
boundaries.

In [98], we extend the layer segmentation al-
gorithm using a densely connected Conditional
Random Field. To segment the video, the CRF
can use evidence from any location in the image,
not just from the immediate surroundings of a
pixel. Additionally, the CRF drastically reduces

runtime of the segmentation step, while preserv-
ing the high fidelity at motion boundaries.

PCA-Layers [55] combines a layered ap-
proach with a fast, approximate optical flow
algorithm. Within each layer, the optical flow
is smooth and can be expressed using low spa-
tial frequencies. Sharp discontinuities at surface
boundaries, on the other hand, are captured by
the layered formulation, and therefore do not
need to be modeled in the spatial structure of the
flow itself, allowing highly efficient layered flow
computation.

We also use layered models in the treatment
of motion blur [63]. In a dynamic scene, objects
can move and occlude each other. Together with
the nonzero shutter speed of the camera, this cre-
ates motion blur, which can be complex close to
object boundaries; pixel values arise as a combi-
nation of foreground and background. Using a
layered model allows us to separate overlapping
layers from each other, making it possible to si-
multaneously segment the scene compute optical
flow in the presence of motion blur, and deblur
each layer independently.

More information: https://ps.is.tuebingen.mpg.de/project/layered-optical-flow
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High-level Priors

Andreas Geiger, Fatma Güney, Chaohui Wang

Figure 1.18: Left: Using object knowledge we are able to resolve stereo ambiguities, in particular at textureless and
reflective surfaces. This leads to smoother and more accurate depth maps (middle) compared to using classical
local regularizers (top). In additon we obtain highly detailed 3D object estimates (bottom) [58]. Right: Our 3D
scene flow model decomposes the scene into its rigid components. This way, we simultaneously obtain a motion
segmentation of the image (top) while implicitly regularizing the scene flow solution (middle) [52, 57].

While many computer vision problems are for-
mulated as purely bottom-up processes, it is well
known that top-down cues play an important role
in human perception. But how can we integrate
this high-level knowledge into current models?
In this project, we investigate this question and
propose models for stereo [58], scene flow [52,
57], and 3D scene understanding [50] which for-
mulate our prior belief about the scene in terms
of high-order random fields [25, 132]. We also
tackle the aspect of tractable approximate infer-
ence which is particularly challenging for these
kind of models.

Stereo techniques have witnessed tremendous
progress over the last decades, yet some aspects
of the problem remain challenging today. Strik-
ing examples are reflective and textureless sur-
faces which cannot easily be recovered using
traditional local regularizers. In [58], we there-
fore propose to regularize over larger distances
using object-category specific disparity propos-
als. Our model encodes the fact that objects of
certain categories are not arbitrarily shaped but
typically exhibit regular structures. We integrate
this knowledge as non-local regularizer for the
challenging object category "car" into a super-

pixel based CRF framework and demonstrate its
benefits on the KITTI stereo evaluation.

In [52, 57], we propose a novel model and
dataset for 3D scene flow estimation with an
application to autonomous driving. Taking ad-
vantage of the fact that outdoor scenes often de-
compose into a small number of independently
moving objects, we represent each element in the
scene by its rigid motion parameters and each
superpixel by a 3D plane as well as an index
to the corresponding object. This minimal rep-
resentation increases robustness and leads to a
discrete-continuous CRF where the data term de-
composes into pairwise potentials between super-
pixels and objects. Moreover, our model intrin-
sically segments the scene into its constituting
dynamic components. We demonstrate the per-
formance of our model on existing benchmarks
as well as a novel realistic dataset with scene
flow ground truth. We obtain this dataset by an-
notating 400 dynamic scenes from the KITTI
raw data collection using detailed 3D CAD mod-
els for all vehicles in motion. Our experiments
also reveal novel challenges which cannot be
handled by existing methods.

More information: https://ps.is.tuebingen.mpg.de/project/high-level-priors
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Intrinsic Properties of Scenes

Naejin Kong, Martin Kiefel, Peter Gehler, Michael Black

Figure 1.19: (Top left) Given a single image we decouple albedo and shading with a Global Sparsity prior on albedo.
1a-b: input images, 2,3: ground truth, 4a-b,5a-b: estimated albedo and shading with different settings a and b.
(Top right) We extract temporally coherent albedo and shading sequences from video alone by exploiting physical
properties derived from temporal variation in the video. (Bottom) We formulate the estimation of dense depth maps
from video sequences as a problem of intrinsic image estimation.

Intrinsic images correspond to physical prop-
erties of the scene. It is a long-standing hypothe-
sis that these fundamental scene properties pro-
vide a foundation for scene interpretation.

To decouple albedo and shading given a sin-
gle image, we introduce a novel prior on albedo,
that models albedo values as being drawn from
a sparse set of basis colors [122]. This results in
a Random Field model with global, latent vari-
ables (basis colors) and pixel-accurate output
albedo values. We show that without edge infor-
mation high-quality results can be achieved, that
are on par with methods exploiting this source of
information. Finally, we can improve on state-of-
the-art results by integrating edge information
into our model.

While today intrinsic images are typically
taken to mean albedo and shading, the origi-
nal meaning includes additional images related
to object shape, such as surface boundaries, oc-
cluding regions, and depth. By using sequences
of images, rather than static images, we ex-
tract a richer set of intrinsic images that include:

albedo, shading, optical flow, occlusion regions,
and motion boundaries. Intrinsic Video [67] es-
timates temporally coherent albedo and shad-
ing sequences from video by exploiting the fact
that albedo is constant over time while shading
changes slowly. The approach makes only weak
assumptions about the scene and substantially
outperforms existing single-frame intrinsic im-
age methods on complex video sequences.

Intrinsic Depth [43] steps towards a more in-
tegrated treatment of intrinsic images. Our ap-
proach synergistically integrates the estimation
of multiple intrinsic images including albedo,
shading, optical flow, surface contours, and
depth. We build upon an example-based frame-
work for depth estimation that uses label transfer
from a database of RGB and depth pairs. We
also integrate sparse structure from motion to
improve the metric accuracy of the estimated
depth. We find that combining the estimation of
multiple intrinsic images improves depth estima-
tion relative to the baseline method.

More information: https://ps.is.tuebingen.mpg.de/project/scene-intrinsics-from-x
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Inverse Graphics

Matthew Loper, Varun Jampani, Peter Gehler, Michael Black

Figure 1.20: (a) 3D mesh reconstruction with the first 1000 samples obtained using ’informed sampling’. (b) Left: a
rotating quadrilateral. Middle: OpenDR’s predicted change in pixel values with respect to in-plane rotation. Right:
corresponding finite differences. (c) Top: captured image. Middle: captured point cloud together with estimated body
model. Bottom: estimated body shown on background point cloud.

A long standing and conceptually elegant view
of computer vision is to use a generative model
of the physical image formation process and pos-
terior inference to infer or explain the image ob-
servations. A key problem in this inverse graph-
ics view is the difficulty of posterior inference at
run time. This difficulty stems from a number of
causes: (1) high-dimensionality of the posterior,
(2) complex and dynamic dependency between
model parameters and (3) the forward graphics
simulations being expensive. We address these
issues in terms of local and global optimization.

For local optimization, we propose an approx-
imate differentiable renderer (DR) [66] that ex-
plicitly models the relationship between changes
in model parameters and image observations.
The OpenDR framework makes it easy to ex-
press a forward graphics model and then auto-
matically obtain derivatives with respect to the
model parameters and to optimize over them.
Built on a new auto-differentiation package and

OpenGL, OpenDR provides a local optimization
method that can be incorporated into probabilis-
tic programming frameworks. We demonstrate
the power and simplicity of programming with
OpenDR by using it to solve the problem of es-
timating human body shape from Kinect depth
and RGB data.

To address issues of more global optimiza-
tion, we also propose the informed sampler [61]
that leverages computer vision features and algo-
rithms to make informed proposals for the state
of latent variables. These proposals are accepted
or rejected based on the generative graphics
model. The informed sampler is simple and easy
to implement, yet it enables inference in gener-
ative models that were out of reach for current
uninformed samplers. We demonstrate this claim
on challenging models that incorporate render-
ing engines, object occlusion, ill-posedness, and
multi-modality.

More information: https://ps.is.tuebingen.mpg.de/project/inverse-graphics-proj
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Scene Understanding

Andreas Geiger, Peter Gehler, Varun Jampani, Chaohui Wang

Figure 1.21: Left: Facade parsing using auto-context [60]. Center: Recovering 3D urban scene layout while
estimating and associating all objects in the scene [20, 92]. Right: Indoor scene understanding from a single RGB-D
image using 3D CAD priors [50].

Holistic scene understanding is an important
prerequisite for many indoor and outdoor ap-
plications, including autonomous driving, navi-
gation, indoor and outdoor mapping as well as
localization. Given a high-dimension input (e.g.,
image or video stream), the task is to extract a
rich but compact representation that is easily ac-
cessible to subsequent processing stages. Typical
outputs comprise semantic information [60, 115]
or 3D information about the shape and pose of
objects and layout elements in the scene [20, 50,
92]

In [20, 92], we present novel probabilistic gen-
erative models for multi-object traffic scene un-
derstanding from movable platforms which rea-
son jointly about the 3D scene layout as well
as the location and orientation of objects in the
scene. In particular, the scene topology, geome-
try and traffic activities are inferred from short
video sequences. Inspired by human driving ca-
pabilities, our models do not rely on GPS, lidar
or map knowledge. Instead, we take advantage
of a diverse set of visual cues in the form of ve-
hicle tracklets, vanishing points, semantic scene
labels, scene flow and occupancy grids. Our ap-
proach successfully infers the correct layout in
experiments on varied videos of 113 challenging
intersections.

In [50], we propose a model which infers 3D
objects and the layout of indoor scenes from
a single RGB-D image captured with a Kinect
camera. In contrast to existing holistic scene un-
derstanding approaches, our model leverages de-
tailed 3D geometry using inverse graphics and
explicitly enforces occlusion and visibility con-
straints for respecting scene properties and pro-
jective geometry. We cast the task as MAP in-
ference in a high-order conditional random field
which we solve efficiently using message pass-
ing. Our experiments demonstrate that the pro-
posed method is able to infer scenes with a large
degree of clutter and occlusions.

In [60], we propose a system for the prob-
lem of facade segmentation. Building facades
are highly structured images and consequently
most methods that have been proposed for this
problem, aim to make use of this strong prior
information. In this work, we propose a system
which is almost domain independent and con-
sists of standard segmentation methods. A se-
quence of boosted decision trees is stacked using
auto-context features. We find that this, albeit
standard, technique performs better, or equals,
all previous published empirical results on all
available facade benchmark datasets.

More information: https://ps.is.tuebingen.mpg.de/project/scene-understanding
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3D Recognition

Peter Gehler, M. Stark, B. Schiele, B. Pepik

Figure 1.22: An overview of our 3D object detection model. This model localizes objects and infers their articulation
and 3D shape from single static images. Objects of different categories can be detected in cluttered environments.

The ability to recognize and categorize objects
in any type of visual scene is an integral part of
scene recognition systems. While for constrained
scenarios, like face detection, this problem has
largely been solved, the general case of recogniz-
ing any kind of object in real world and cluttered
environments remains an open research problem.
Many different factors contribute to the complex-
ity of this problem. A main complicating factor is
in images one has access to 2D projections of ob-
jects, whereas they really are three dimensional
physical objects. This projection leads to signifi-
cant ambiguity in object appearance. Therefore
the predominant paradigm today, is to largely
ignore the 3D structure, and attack object class
recognition using 2D feature-based models.

In contrast to this we investigate models that
take into account the 3D structure of objects.
We believe that building models that encode the
three dimensional origin of real world objects
has several benefits. It leads to more compact
computational models that therefore will need
less training data during a training phase. Fur-
ther, the output of 3D object detection systems
will enable richer reasoning about entire visual
scenes. A simple bounding box around objects
of interest may be sufficient for counting and
coarse localizing of objects. However, we aim to
recover articulations and the 3D extent of objects
together with a precise localization and catego-
rization. This richer information is needed in
order to extract knowledge about object compo-
sitions in a scene as a whole.

In the last years we have made progress to-
wards this goal. The work [8, 114, 119] proposes
methods that perform 3D bounding box detec-
tion from 2D images. We extend a state-of-the-
art model, namely the Deformable Parts Model
(DPM) from Felzenszwalb et al., to a full 3D ob-
ject model. The DPM is a mixture of star based
CRF models that include deformation and ap-
pearance terms. We propose a CRF that models
an object directly in 3D and that can be evaluated
using any image projection. Then, for novel un-
seen images, the object identity, its localization
and the projection from 3D to 2D is reasoned
about. Since most benchmarks promote object
detection as a 2D detection task, and we use only
2D training data, we use CAD models to inform
our detection model about the 3D structure of
objects. This enables reasoning about occlusion
[96] and transfer learning of geometric informa-
tion across different object instances [80].

In [53] we extended our work into a system
that is capable of extracting detailed CAD mod-
els from unconstrained images. We combine sev-
eral estimation steps that infer viewpoint, object
identity and position into a coherent system that
results in very fine grained and detailed hypothe-
ses about the objects present in the scene. Follow-
ing careful design, in each stage the method con-
stantly improves the performance and achieves
state-of-the-art performance in simultaneous 2D
bounding box and viewpoint estimation on the
challenging Pascal3D+ dataset.

More information: https://ps.is.tuebingen.mpg.de/project/objects-in-3d
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Object Detection

Jürgen Gall, Abhilash Srikantha, N. Razavi, L. Van Gool

Figure 1.23: Left: During detection, Hough forests cast weighted votes to a Hough space (orange) where objects
are detected by localizing modes. Improved performance can be realized by using latent Hough spaces thereby
relaxing the patch independece criterion. Right: Instances of common objects in videos are discovered by defining
a model that encodes similarity of their appearance and functionality.

Object detection for real world applications
is still a challenging problem. While increased
data can partly solve the problem, the ability of
detectors to process large data sets in reasonable
time becomes another important issue besides
accuracy.

A family of methods that can handle large
amount of training data efficiently, and that are
inherently suited for multi-class problems, are
based on random forests, which are ensembles
of randomized decision trees that can be applied
to regression or classification tasks. Since object
detection involves both classifying patches be-
longing to an object and using them to regress the
location and scale of the object, random forests
for object detection need to be trained to satisfy
both objectives [128].

While object detection based on Hough forests
allows parts observed in different training in-
stances to support a single object hypothesis, it

also produces false positives by accumulating
votes that are consistent in location but inconsis-
tent in other properties like pose, color, shape or
type. To address this problem, Hough forests can
be augmented with latent variables in order to
enforce consistency among votes [113]. To this
end, only votes that agree on the assignment of
the latent variable are allowed to support a single
hypothesis.

In order to avoid an expensive manual labeling
process, or to learn object classes autonomously
without human intervention, we propose a frame-
work for object discovery in activity-labeled
videos [71]. Since small objects like pens are dif-
ficult to discover only based on appearance, we
introduce similarity based on object functional-
ity, which can be estimated from relative human-
object motion during the activity. We show that
functionality is an important cue for discovering
objects from activities in RGB(D) video datasets.

More information: https://ps.is.tuebingen.mpg.de/project/object-detection
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Computer Vision Performance Evaluation

Andreas Geiger, Jonas Wulff, Moritz Menze, Daniel Butler, Michael Black

Figure 1.24: The KITTI Vision Benchmark Suite (left) and the MPI Sintel Benchmark (right) provide ground truth data
and evaluation servers for benchmarking vision algorithms. So far, more than 400 methods have been evaluated on
our benchmarks.

While ground truth datasets spur innovation,
many current datasets for evaluating stereo, opti-
cal flow, scene flow and other tasks are restricted
in terms of size, complexity, and diversity, mak-
ing it difficult to train and test on realistic data.
For example, we co-authored the Middlebury
flow dataset [38], which arguably set a standard
for the field but was limited in terms of complex-
ity.

In [26, 57], we took advantage of an au-
tonomous driving platform to develop challeng-
ing real-world benchmarks for stereo, optical
flow, scene flow, visual odometry/SLAM, 3D
object detection, 3D tracking and road/lane de-
tection. Accurate ground truth is provided by
a Velodyne laser scanner and a GPS localiza-
tion system. Our datasets are captured by driving
around a mid-size city of Karlsruhe, in rural ar-
eas and on highways with up to 15 cars and 30
pedestrians visible per image. For each of our
benchmarks, we also provide a set of evaluation
metrics and a server for evaluating results on the
test set. Our experiments showed that moving
outside the laboratory to the real world was criti-

cal. We continue to develop new ground truth to
push the field further.

In [106, 107], we proposed a novel optical
flow, stereo and scene flow data set derived from
the open source 3D animated short film Sin-
tel. We extracted 35 sequences displaying differ-
ent environments, characters/objects, and actions
and showed that the image and motion statistics
of Sintel are similar to natural movies. Using the
3D source data, we created an optical flow data
set exhibits important features not present in pre-
vious datasets: long sequences, large motions,
non-rigidly moving objects, specular reflections,
motion blur, defocus blur, and atmospheric ef-
fects. We released the ground truth optical flow
for 23 training sequences and withheld the re-
maining 12 sequences for evaluation purposes.
When released in 2012, the best methods had
an average endpoint error of around 10 pixels.
The dataset has focused the community on core
problems and only 3.5 years later, there are over
70 methods evaluated on the benchmark with the
best methods are approaching 5 pixels in error.

More information: https://ps.is.tuebingen.mpg.de/project/datasets
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Human Pose, Shape and Action

Michael Black, Peter Gehler, Javier Romero, Federica Bogo, Silvia Zuffi, Hueihan Jhuang, Matthew Loper, Jürgen

Gall, Cordelia Schmid

Figure 1.25: We propose novel challenging datasets for human pose estimation, 3D mesh registration and action
recognition: a) MPII Human Pose, including around 25000 images of over 40000 people with annotated 2D body
joints; b) FAUST, collecting 300 real human body scans with automatically computed ground-truth correspondences;
c) J-HMDB, a dataset for action recognition with annotated human joints, segmentation, and optical flow.

Human pose estimation, 3D mesh registration
and action recognition techniques have made
significant progress during the last years. How-
ever, most existing datasets to evaluate them are
inadequate for capturing the challenges of real-
world scenarios. We introduce novel datasets and
benchmarks, all publicly available for research
purposes.

In [131], we describe the datasets currently
available for pose estimation and the perfor-
mance of state-of-the-art methods on them. In
[81], we introduce a novel benchmark for pose
estimation, "MPII Human Pose", that makes a
significant advance with respect to previous work
in terms of diversity and difficulty. It includes
around 25000 images containing over 40000 peo-
ple performing more than 400 different activities.
We provide a rich set of labels including body
joint positions, occlusion labels, and activity la-
bels. Given these rich annotations we perform
a detailed analysis of the leading human pose
estimation approaches, gaining insights for the
successes and failures of these methods.

FAUST [77] is the first dataset for 3D mesh

registration providing both real data (300 human
body scans of different people in a wide range
of poses) and automatically computed ground-
truth correspondences between them. We define
a benchmark on FAUST, and find that current
shape registration methods have trouble with this
real-world data.

With the "Joints for the HMDB" dataset (J-
HMDB) we focus on action recognition [87].
We annotate complex videos using a 2D "pup-
pet" body model to obtain "ground truth" joint
locations as well as optical flow and segmen-
tation. We evaluate current methods using this
dataset by systematically replacing the input to
various algorithms with ground truth. This en-
ables us to discover what is important – e.g.,
should we improve flow algorithms, or enable
pose estimation? We find that high-level pose
features greatly outperform low/mid level fea-
tures; in particular, pose over time is critical. Our
analysis and the J-HMDB dataset should facili-
tate a deeper understanding of action recognition
algorithms.

More information: https://ps.is.tuebingen.mpg.de/project/evaluating-humans
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Neural Prosthetics and Decoding

Michael Black, J. Donoghue, J. Simeral, S.-P. Kim, L. Hochberg, M. Homer, C. Vargas-Irwin

Figure 1.26: Left top (A-C): Firing of three different neurons in the brain of a paralyzed human. B and C show
directional tuning. Left bottom (A-C): Firing rate of the same neurons as a function of imagined "clicking". A and C
modulate with clicking. Right: Decoded trajectories in a center-out task from a population of motor cortical neurons
in a human at around 1000 days after implantation.

We use motion capture together with electrode
arrays, implanted in the motor cortex of mon-
keys, to learn how motor cortical activity relates
to movement and to create new algorithms to
decode this activity. Translating these models
to paralyzed humans allows us to restore or im-
prove lost function in people with central ner-
vous system injury by directly coupling brains
with computers, allowing people to control a
computer cursor with their thoughts.

We developed a point-and-click intracortical
Brain Computer Interface (iBCI) that enables
humans with tetraplegia to volitionally move a
2D computer cursor in any desired direction on
a computer screen, hold it still, and click on an
area of interest [37]. This direct brain-computer
interface extracts both discrete (click) and con-
tinuous (cursor velocity) signals from a single
small population of neurons in human motor
cortex. Enabling this is a multi-state probabilis-
tic decoding algorithm that simultaneously de-
codes neural spiking activity and outputs either
a click signal or the velocity of the cursor. The

algorithm combines a linear classifier, which de-
termines whether the user is intending to click
or move the cursor, with a Kalman filter that
translates the neural population activity into cur-
sor velocity. We present a paradigm for training
the multi-state decoding algorithm using neu-
ral activity observed during imagined actions.
We quantified point-and-click performance us-
ing various human-computer interaction mea-
surements for pointing devices. We found that
participants could control the cursor motion and
click on specified targets, suggesting that signals
from a small ensemble of motor cortical neurons
( 40) can be used for natural point-and-click 2D
cursor control of a personal computer. Further-
more in [36] we showed that such devices could
be used to decode intended cursor movement
over 1000 days after implantation.

Our ongoing work focuses on developing new
non-linear decoding algorithms [14, 19] and on
analyzing the motor control of grasping in non-
human primates [10].

More information: https://ps.is.tuebingen.mpg.de/project/neural-prosthetics
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Markerless Animal Motion Capture

Michael Black, Oren Freifeld, K. Shenoy, P. Nuyujukian, J. Foster

Figure 1.27: Markerless behavior capture. (a) Unconstrained behavior is recorded synchronously with video
cameras while broadband neural activity is recorded and transmitted wirelessly. Images of the Stanford HermesE
(b) transmitter and recording electronics, (c) receiving antenna, and (d) receiver and FPGA.

Experiments in motor neurophysiology of-
ten involve animals performing repeated actions.
Stereotyped and practiced actions facilitate data
analysis by allowing the experimenter to aver-
age neural firing activity across multiple trials.
Does such activity, however, reflect what hap-
pens during natural, unconstrained, and sponta-
neous movement? Do models of neural activity
developed in such settings translate to intracorti-
cal brain-machine interfaces (iBMIs) where hu-
mans need to control devices in a dynamically
changing context?

To answer these questions we must record
natural behavior and the corresponding neural
activity [16, 116, 124]. For the latter, our collabo-
rators at Stanford have developed an implantable
device that enables the wireless recording of
spiking activity from many neurons at once (see
Figure). For the former, traditional marker-based
motion capture techniques are impractical for
full-body animal tracking. Consequently we ex-
ploit our work on human tracking to enable mark-
erless articulated animal tracking.

Our system transmits neural activity from an

intracortical array using a head-mounted device
and records behavior using multi-camera mark-
erless motion capture. We demonstrate this with
the first recordings from motor cortex of rhesus
monkeys walking quadrupedally on a treadmill.
We find that multi-unit threshold-crossings en-
code the phase of walking and that the average
firing rate covaries with the speed of individual
steps.

Freely-moving animal models may allow neu-
roscientists to examine a wider range of be-
haviors and can provide a flexible experimen-
tal paradigm for examining the neural mecha-
nisms that underlie movement generation across
behaviors and environments. For iBMIs, freely-
moving animal models have the potential to aid
prosthetic design by enabling the study of how
neural encoding changes with posture, environ-
ment, and other real-world context changes. Un-
derstanding behavior in more naturalistic set-
tings is essential for overall progress of basic
motor neuroscience and for the successful trans-
lation of BMIs to people with paralysis.

More information: https://ps.is.tuebingen.mpg.de/project/markerless-animal-mocap
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Artist-in-Residence Program (AIR)

Emma-Jayne Holderness

The artist in residence program (AIR) in Per-
ceiving Systems matches artists with researchers
who often use similar media, though in differ-
ent contexts. Bringing artists into the scientific
environment creates surprising synergies by jux-
taposing different viewpoints and methodologies,
enabling researchers to see their work in a dif-
ferent light, sparking creative thinking, and ulti-
mately leading to innovative ideas.

Lilla and Bill Outcault, Sept. 2015. Lilla
and Bill were the first artists to use 3D body scan-
ners as an artistic tool. They produce marionettes
or avatars that are anonymous yet universal fig-
ures that portray the concept of human frailty.
Their project with Perceiving Systems involved
six dancers with individual choreographies that
express feelings of emotion through the body
including anxiety, fear, panic and insanity.

http://locurto-outcault.com

Helga Griffiths, Feb. 2016. Helga has won
multiple prizes and grants and her work, which
has been widely exhibited internationally, often
builds on collaborations with scientists. Most of
Helga’s work involves the integration of various
sensory stimuli, producing “multi-sense” instal-
lations that play with the boundaries of conven-
tional perception.

Helga’s current project, called “negative
space,” involves data capture of identical twin
dancer choreographies in our 4D scanner. Helga
is interested in the space created between the
dancers and what this space means about the
relationship between them.

http://www.helgagriffiths.de

Peter Evers. Peter Evers’ work explores the
relationship between human identity and technol-
ogy. His exhibition “Irresistible drift” contains
video and motion capture sequences from Per-
ceiving Systems and was exhibited at Belfast
Exposed. The work shows a human subject in-
strumented for performance capture against a
green-screen backdrop. He sees the subject as re-
duced to a puppet by the technology their every
movement recorded for research. Research on
body shape in Perceiving Systems can be seen
as the most advanced approach for “capturing”
the image and identity of people. This brings
up issues of what is private and what is public?
How will our avatars behave and represent us in
the digital world? Can they be appropriated by
others?

http://www.belfastexposed.org/exhibition/
Irresistible_Drift

More information: https://ps.is.tuebingen.mpg.de/project/jobs/art
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4D Scanner. Human bodies and clothing de-
form in complex ways and exhibit interesting dy-
namics. To study and model 3D shapes in motion
we commissioned a unique 4D scanner that cap-
tures the full 3D human body shape at 60 frames
per second. Built for us by 3dMD (Atlanta, GA),
the system uses 22 pairs of stereo cameras, 22
color cameras, and custom speckle projectors.
The speckle patterns allow accurate stereo re-
construction of 3D shape. This speckle pattern
alternates at 120fps with large white-light LED
panels that provide a smooth nearly uniform illu-
mination. Each frame in the “4D movie” is a 3D
mesh with approximately 150,000 points.

This facility enables us to study body shape
in motion, understand how bodies deform, and
to capture the dynamics of soft tissue motions
at high spatial and temporal resolution. With the
world’s first true 4D body scanner we have cap-
tured bodies in motion in ways that have never
been seen before. Our custom protocols and soft-
ware are providing new insights into body shape
and motion for graphics, medicine, psychology,
and computer vision.

With this scanner we have captured hundreds
of thousands of 3D scans. Processing this data
to make it useful involves registering a 3D tem-

plate mesh to all the scans in a process we call
4Cap, for 4D motion capture. Our current re-
search focuses on extending these techniques to
accurately capture the 4D motions of clothing
on the body.
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3D Scanner. We also capture static 3D scans
of bodies, faces, hand and other objects. In our
Body Lab, we house a full body 3D stereo cap-
ture system, custom built by 3dMD. At the time
of installation, it was both the largest and high-
est resolution system of its kind in the world.
The aluminium frame has 22 modular, medical
standard scanning units. Each of those contains
a pair of stereo cameras for computing shape
and geometry, utilizing either one or two speckle
projector units and a single 5 megapixel colour
camera for capturing texture. A series of flash
units illuminate the subject during capture. Five
Windows based PCs control the camera pods and
communicate over gigabit ethernet and internally
via Firewire 800. Capture takes a fraction of a
second, and the system can fire several times per
minute.

The system is normally configured to capture
a 3D scan of a full human body, in a full range
of poses. Since the capture time is so fast (2ms),
fast motions such as jumping or skipping can be
accurately frozen in time. To date we’ve taken
over 29,000 scans with this system, and have
ongoing body shape trials.

Motion Capture. The department also uses
traditional motion capture systems. We share the
use of a 12 camera T10-series VICON track-
ing system with the Autonomous Motion depart-
ment. We also have an Optitrack system that is
synchronized with our 4D capture system, en-
abling us to precisely evaluate how the systems
compare in terms of motion and shape recov-
ery. We also collaborate with researchers in Bio-
logical Cybernetics, where they have extensive
motion capture facilities including IMU-based
Xsens suits, a Vicon system, and various other
sensing and display technologies.

Video Capture. Our video capture facility
supports the development of new markerless mo-
tion and shape capture systems. The facility con-
tains a 4DViews system with 12 synchronized
4 megapixel cameras that capture video at full
resolution at nearly 60fps, or at lower resolu-
tions at up to 200fps. A series of Linux PCs
drive the cameras over gigabit ethernet. The cam-
eras themselves are mounted on a rigid frame or
on high quality ManfrottoTM tripods and magic
arms, to allow complete freedom of configura-
tion within the lab itself. Four large fluorescent
lamps provide static, consistent lighting to the
performance space, which is surrounded by a
green-screen curtain. 4DViews provides an ex-
tensive software suite for viewing the raw cam-
era footage and managing the whole system, and
a local, high performance NAS appliance serves
40TB of online storage.
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1.4 Awards & Honors

2016

Cordelia Schmid, Humboldt Research Award.

2015

The Middlebury Dataset was awarded the 2015 IEEE Mark Everingham Prize for service and
contributions to the computer vision community. Michael Black was part of the team behind
the optical flow benchmark.

Jonas Wulff: Outstanding Reviewer Award, Int. Conf. on Computer Vision (ICCV).

Ali Osman Ulusoy, Andreas Geiger, and Michael J. Black: Best Paper Award, International
Conference on 3D Vision (3DV), 2015, for the paper "Towards Probabilistic Volumetric
Reconstruction using Ray Potentials."

Andreas Geiger and Chaohui Wang: 2015 Best Paper Award, German Conference on Pattern
Recognition (GCPR), for the paper “Joint 3D Object and Layout Inference from a single
RGB-D Image.”

Federica Bogo: Third prize at the Science2Start business plan competition.

Michael J. Black: elected foreign member of the Royal Swedish Academy of Sciences, class for
engineering sciences.

Andreas Geiger: KIT Doctoral Award for his PhD thesis on “Probabilistic Models for 3D Urban
Scene Understanding from Movable Platforms.”

2014

Andreas Geiger: Ernst-Schoemperlen-Prize for his PhD thesis, awarded by the KIT Center for
Mobility Systems

2013

Michael J. Black: Helmholtz Prize for work that has stood the test of time; for the paper: Black,
M. J., and Anandan, P., “A framework for the robust estimation of optical flow,” IEEE
International Conference on Computer Vision, ICCV, pages 231-236, Berlin, Germany. May
1993.

Gerard Pons-Moll: Best Science Paper Award at the British Machine Vision Conference (BMVC)
2013 for the paper “Metric Regression Forests for Human Pose Estimation,” with J. Taylor, J.
Shotton, A. Hertzmann, and A. Fitzgibbon.

Andreas Geiger: Best Paper Runner-Up Award at CVPR 2013 for the paper “Lost! Leveraging
the Crowd for Probabilistic Visual Self-Localization” with M. Brubaker and R. Urtasun.

Juergen Gall: Emmy-Noether-Program Stipend from the German Science Foundation.
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1.5 Director profile: Michael J. Black

Michael J. Black received his B.Sc. in Honours Computer Science from the University of British
Columbia (1985), his M.S. in Computer Science from Stanford University (1989), and his Ph.D. in
Computer Science from Yale University (1992). As a graduate student he performed research at the
NASA Ames Research Center, Aerospace Human Factors Research Division. After one year as an
assistant professor at the University of Toronto, he joined the Xerox Palo Alto Research Center in
1993 as a member of research staff. He went on to managed the Image Understanding Area and
found the Digital Video Analysis Area. In 2000 he joined the faculty of Brown University in the
Department of Computer Science as an Associate Professor with tenure. He was promoted to Full
Professor in 2004. In 2011 he joined the Max Planck Society as a Scientific Member and one of the
founding directors of the Max Planck Institute for Intelligent Systems in Tübingen, Germany.

Dr. Black’s research spans computer vision, computer graphics, and computational neuroscience.
In vision and graphics he is most known for his work on optical flow, robust statistical methods,
human motion capture and analysis, 3D body shape modeling, and probabilistic models of the
visual world. In computational neuroscience his work focuses on probabilistic models of the neural
code and applications of neural decoding in human neural prosthetics.

Dr. Black is a foreign member of the Royal Swedish Academy of Sciences. He is a recipient of the
2010 Koenderink Prize for Fundamental Contributions in Computer Vision and the 2013 Helmholtz
Prize for work that has stood the test of time. His work has won several paper awards including
the IEEE Computer Society Outstanding Paper Award (CVPR’91) and Honorable Mention for the
Marr Prize in 1999 and 2005. His early work on optical flow has been widely used in Hollywood
films including for the Academy-Award-winning effects in “What Dreams May Come” and “The
Matrix Reloaded.” He has contributed to several influential datasets including the Middlebury Flow
dataset, HumanEva, and the MPI-Sintel dataset.

He is a co-founder and member of the board of directors of Body Labs Inc., which is commer-
cializing his team’s research on 3D human body shape.
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Dr. Michael J. Black

Appointments

01/2011 – present Director at the Max Planck Institute for Intelligent Systems
05/2012 – present Honorary Professor, Department for Computer Science, University of Tübingen
04/2014 – present Visiting Professor, Dept. of Inf. Tech. and Electrical Eng., ETH Zurich
01/2011 – present Adjunct Professor, Dept. of Computer Science, Brown University
02/2013 – 06/2015 Managing Director of the MPI for Intelligent Systems, Stuttgart and Tübingen
05/2011 – 06/2013 Visiting Professor, Electrical Engineering, Stanford University

Awards & Honors (Selected)

2015 Elected foreign member of the Royal Swedish Academy of Sciences
2015 Best Paper Award, International Conference on 3D Vision (3DV)
2013 Helmholtz Prize for work that has stood the test of time
2010 Koenderink Prize for Fundamental Contributions in Computer Vision
2005 Marr Prize, Honorable Mention, Int. Conf. on Computer Vision, ICCV
1999 Marr Prize, Honorable Mention, Int. Conf. on Computer Vision, ICCV
1991 IEEE Computer Society, Outstanding Paper Award, CVPR

Selected Organization and Community Service (2011-2015)

2015 Co-organizer of the workshop "Scenes from Video II", Colchagua Valley, Chile
2015 Co-organizer of the Tutorial "How to build a digital human body" at ICCV
2015 Co-Director, Max Planck ETH Center for Learning Systems (CLS)
2015 Co-organizer of the Computational Vision Summer School, Bernstein Center
2014 Co-organizer of the Computer Vision Workshop, with ETH Zurich
2013 Co-organizer of the workshop "Scenes from Video", Barossa Valley, Australia
2012 Area Chair of the European Conference on Computer Vision (ECCV)
2012 Co-organizer of the Computational Vision Summer School, Bernstein Center

Memberships (2011–2015)

Royal Swedish Academy of Science, since 2015
Association of Computing Machinery (ACM), member since 2014
MPI-ETH Center for Learning Systems, Member since 2015
Werner Reichardt Center for Integrative Neuroscience (CIN), Tübingen University, member since 2011
Bernstein Center for Computational Neuroscience (BCCN), Tübingen, member since 2011
Canadian Institute for Advanced Research (CiFAR), Associate 2006 – 2014
Institute for Electrical and Electronics Engineers (IEEE): Senior Member since 2008
Society for Neuroscience (SfN): 2001-2014
Brown Institute for Brain Science (BIBS), member since 2000

Startup Activity and Board Memberships (2011 – 2015)

Body Labs Inc., New York, NY, Co-founder, Member of the Board, 2013 – present
Willow Garage, Palo Alto, CA, Advisory Board, 2008 – 2013
Videosurf Inc., San Mateo, CA, Scientific Advisory Board, 2006 – 2011. Sold to Microsoft

Selected Keynote, Conference, Workshop, and Public Talks (2011-2015)

Keynote, 12th IEEE Int. Conf. on Advanced Video and Signal-based Surveillance, AVSS, Karlsruhe, 2015
Plenary, Int. Conf. on Robotics and Automation (ICRA), Karlsruhe,May 2013
Keynote, Swedish Society for Automated Image Analysis, SSBA, Stockholm, 2012
Keynote, Vision, Modeling and Visualization Workshop (VMV), Berlin, 2011
Keynote, International Workshop on Human Activity Understanding from 3D Data, 2011
Public talk, Science Notes, WAHRnehmung in Tübingen, 2015
FMX Conference on Animation, Effects, Games and Transmedia, Stuttgart, 2015
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1.6 Publications

1.6.1 Books

2014

[1] S. Nowozin, P. V. Gehler, J. Jancsary, C. H. Lampert. Advanced Structured Prediction. Neural
Information Processing Series. MIT Press, 432 pages, 2014.

2012

[2] A. Fossati, J. Gall, H. Grabner, X. Ren, K. Konolige. Consumer Depth Cameras for Computer Vision
- Research Topics and Applications. Advances in Computer Vision and Pattern Recognition. Springer,
2012.

1.6.2 Proceedings

2015

[3] J. Gall, P. Gehler, B. Leibe, editors. Proceedings of the 37th German Conference on Pattern Recog-
nition. Springer, 2015.

1.6.3 Journal Articles

2016

[4] T. Feix, J. Romero, H.-B. Schmiedmayer, A. Dollar, D. Kragic. The GRASP Taxonomy of Human
Grasp Types. Human-Machine Systems, IEEE Transactions on 46 (1): 66–77, 2016.

[5] D. Tzionas, L. Ballan, A. Srikantha, P. Aponte, M. Pollefeys, J. Gall. Capturing Hands in Action
using Discriminative Salient Points and Physics Simulation. International Journal of Computer
Vision (IJCV), 2016.

[6] T. von Marcard, G. Pons-Moll, B. Rosenhahn. Human Pose Estimation from Video and IMUs.
Transactions on Pattern Analysis and Machine Intelligence PAMI, 2016.

2015

[7] S. Hauberg, A. Feragen, R. Enficiaud, M. Black. Scalable Robust Principal Component Analysis
using Grassmann Averages. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 2015
(cited on page 10).

[8] B. Pepik, M. Stark, P. Gehler, B. Schiele. Multi-view and 3D Deformable Part Models. Pattern
Analysis and Machine Intelligence 37 (11): 14, 2015 (cited on page 32).

[9] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. J. Black. SMPL: A Skinned Multi-Person
Linear Model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34 (6): 248:1–248:16, 2015 (cited on
pages 20–22).

[10] C. E. Vargas-Irwin, L. Franquemont, M. J. Black, J. P. Donoghue. Linking Objects to Actions:
Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex. Journal of
Neuroscience 35 (30): 10888–10897, 2015 (cited on page 36).

[11] M. A. Brubaker, A. Geiger, R. Urtasun. Map-Based Probabilistic Visual Self-Localization. IEEE
Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2015.

[12] G. Pons-Moll, J. Romero, N. Mahmood, M. J. Black. Dyna: A Model of Dynamic Human Shape in
Motion. ACM Transactions on Graphics, (Proc. SIGGRAPH) 34 (4): 120:1–120:14, 2015 (cited on
pages 21, 22).

[13] G. Pons-Moll, J. Taylor, J. Shotton, A. Hertzmann, A. Fitzgibbon. Metric Regression Forests for
Correspondence Estimation. International Journal of Computer Vision: 1–13, 2015.

[14] C. E. Vargas-Irwin, D. M. Brandman, J. B. Zimmermann, J. P. Donoghue, M. J. Black. Spike train
SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis. Neural
Computation 27 (1): 1–31, 2015 (cited on page 36).
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page 16).
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