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Abstract

This paper introduces and summarizes recent work on probabilistic models of motor

cortical activity and methods for inferring, or decoding, hand movements from

this activity. A simple generalization of previous encoding models is presented in

which neural firing rates are represented as a linear function of hand movements.

A Bayesian approach is taken to exploit this generative model of firing rates for the

purpose of inferring hand kinematics. In particular, we consider approximations

of the encoding problem that allow efficient inference of hand movement using a

Kalman filter. Decoding results are presented and the use of these methods for neural

prosthetic cursor control is discussed.

Keywords: neural prosthesis, motor cortex, neural decoding, Bayesian inference,

Kalman filter, brain-machine interface.

0.1 Introduction

“One might think of the computer in this case as a prosthetic device. Just as a man who

has his arm amputated can receive a mechanical equivalent of the lost arm, so a brain-

damaged man can receive a mechanical aid to overcome the effects of brain damage. It

makes the computer a high-class wooden leg.”

Michael Crichton, The Terminal Man [4].

Two fundamental shifts in neuroscience have recently led to a deeper understand-

ing of the neural control of movement and are enabling the development of neural
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prosthesis that can assist the severely disabled by directly connecting their cen-

tral nervous systems with assistive devices internal or external to the body. The

first of these shifts is the result of new electrode array technology that allows the

chronic implantation of hundreds of microelectrodes in the cortex that can sense

and ultimately transmit outside the body the activity of populations of neurons.

The second shift is part of a movement toward the study of more natural stimuli

and behaviors. In contrast to previous work in neuroscience in which the activity of

a single cell is correlated with a simple (e.g. one dimensional) change in behavior,

today neuroscientists can observe large populations of cortical cells and how they

respond during rich behavioral tasks. With richness comes the cost of complexity

that makes modeling and understanding the relationship between neural activity

and behavior challenging. Neural population recordings can be thought of as a high

dimensional time-varying signal while motor behavior can similarly be thought of

as a high dimensional time series corresponding to the biomechanical parameters

of body pose and motion. We view the problem of modeling the neural code for

prosthetic applications as one of learning a probabilistic model relating these high

dimensional signals.

This approach is summarized in Figure 1. We focus here on neural firing rates

zt = [z1,t . . . zn,t] of a population of n cells recorded in primary motor cortex in

monkeys and relate this activity to a vector of kinematics xt representing the

monkey’s hand pose and movement at an instant in time t.1 More generally we want

to know the relationship between an entire sequence of firing rates Zt = [zt . . . z1]

and hand movements Xt = [xt . . .x1] from time 1 to t. In general we see the

1. While here we focus on firing rates, the probabilistic modeling framework is more
general and equally well applies to spike trains or other neural signals such as local field
potentials. Focusing on rates however will simplify our probabilistic modeling problem. The
same can be said for hand kinematics; for example, instead, we might model biomechanical
properties of the arm dynamics.
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Figure 1 The problem of motor cortical modeling for prosthetic applications can be
viewed as one of learning the joint probability of neural population activity and motor
behavior. Neural data might correspond to spikes, firing rates, local field potentials or
electrocorticograms. Motor behaviors might correspond to joint angles, muscle activation,
limb pose or kinematic parameters. Here we focus on probabilistically modeling motor
cortical firing rates and hand kinematics (position, velocity and acceleration).

problem as one of modeling the joint probability p(Zt, Xt) of neural activity and

hand motion. From such a general model a variety of quantities can be computed

and statistical properties of the model analyzed. Here we focus on the problem of

decoding, or inference, of hand kinematics from firing activity. The probabilistic

approach allows us to exploit a variety of well understood and powerful tools for

probabilistic inference.

The probabilistic modeling problem however is made challenging by the dimen-

sionality of the neural population and the hand kinematics. Consequently we will

make a number of explicit approximations below that will make modeling the proba-

bilistic relationships tractable. In particular we will exploit lower dimensional para-

metric models and assumptions of conditional independence. These will lead us to

an efficient decoding algorithm that takes as input a sequence of neural firing rates

and returns a sequence of probability distributions representing possible hand mo-

tions. This decoding algorithm is used in a neural motor prosthesis that directly

connects the motor cortex of a monkey to a computer cursor and enables the mon-

key to move the cursor under brain control. Such a device provides the foundation

for a new class of cortical brain machine interfaces (BMIs) for the severely disabled
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and, in the near future, may be used to control other external devices such as robot

arms or even the patient’s own limbs through functional electrical stimulation [14].

This paper introduces and summarizes recent work on probabilistically decoding

motor cortical population activity. It briefly summarizes the major issues in the

field: sensing neural activity, models of cortical coding, probabilistic decoding

algorithms, and applications to neural prostheses. In particular we start with

the standard models of motor cortical tuning (e.g. directional tuning) and then

show that these are narrow instantiations of a more general linear model relating

hand motion and neural firing rates. From this generalization, we show that a

well motivated decoding algorithm emerges based on Bayesian probability that

provides a principled approach to decoding hand motions. One advantage of this

Bayesian approach is that the assumptions made along the way are explicit in

a way they are often not in competing approaches. Each of these assumptions

provide an opportunity to improve the model and there have already been many

such improvements which are beyond the scope of this introduction.

0.2 Sensing Neural Activity

“Now listen to me closely, young gentlemen. That brain is thinking. Maybe it’s thinking

about music. Maybe it has a great symphony all thought out or a mathematical formula

that would change the world or a book that would make people kinder or the germ of an idea

that would save a hundred million people from cancer. This is a very interesting problem,

young gentlemen, because if this brain does hold such secrets, how in the world are we ever

going to find out?”

Dalton Trumbo, Johnny Got His Gun [27].

A variety of sensing technologies allow the recording of neural activity with

varying levels of temporal and spatial resolution. To record the action potentials

of individual cells we use the Cyberkinetics/Utah microelectrode array shown in
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Figure 2 Implantable electrode array and connector. (a) Cyberkinetics/Bionic/Utah
electrode array and example waveforms recorded for one cell. (b) Sketch of the implanted
array and connector (source: J. P. Donoghue). (c) Size of array along with percutaneous
connector in reference to a US penny.

Figure 2a which consists of a 10× 10 grid of electrodes [15]. The array is implanted

in arm area of primary motor cortex (MI) in macaque monkeys as illustrated in

Figure 2b and data is transferred out of the brain through a percutaneous connector

shown in Figure 2c.

The implant area satisfies a number of constraints. First, our goal is to restore

movement to people who have lost the ability to control their bodies directly. It

has long been known that the activity of cells in this area of the brain is modulated

by arm and hand movements [8, 9]. While it may be possible to train people to

use other brain regions to control movement, our working hypothesis is that it will

be more “natural” and hence easier to learn to control the movement of cursors

or other devices using a region of the brain already related to movement control.

Second, this region is surgically accessible and on the surface of cortex facilitating

implantation.

Each electrode may record the activity of zero or more neurons. The activity on

each channel (electrode) is filtered and thresholded to detect action potentials. If the

activity of multiple cells (units) is detected on a single channel the action potentials

may be sorted based on their waveform shape and other properties using manual or

automatic spike sorting techniques. A representative example of waveforms detected

for an individual unit using the device is shown in Figure 2a. It is common to recored
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Figure 3 Experimental paradigm. Neural signals are recorded while hand motion con-
trols a computer cursor to hit targets presented at successive random locations on a
computer monitor. Source: J. P. Donoghue.

from 40-50 distinct cells from a single array. We have found however that, for neural

prosthetic applications, careful spike sorting may not be necessary and it may be

sufficient to use the multi-unit activity of all cells recorded on a given channel [30].

To model the relationship between neural firing rates and behavior we used neural

spiking activity recorded while a monkey performed a 2D cursor control task [22].

The monkey’s hand motion and neural activity were recorded simultaneously and

were used to learn a probabilistic model as described below. The task involved

moving a manipulandum on a 2D plane to control the motion of a feedback cursor

displayed on a computer monitor (Figure 3). In contrast to previous studies that

focused on center-out reaching tasks [3, 25] this data was from a sequential random

tracking task in which a target appeared on the screen and the monkey was free

to move the feedback cursor as they liked to “hit” the target. When a target was

acquired it disappeared and a new target appeared in a new random location. Target

locations were drawn independently and identically from a uniform distribution over

the 2D range of the 30cm× 30cm workspace. See [22] for more information on the

sequential random tracking task.
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0.3 Encoding

If spikes are the language of the brain, we would like to provide a dictionary ... perhaps

even ... the analog of a thesaurus.

Rieke, et al., Spikes [19]

To model what aspects of movement are represented (encoded) by the brain

we adopt a probabilistic approach and learn a generative model of neural activity.

In particular, we seek a function f(·) of the hand kinematics, xt at time t, that

“explains” the observed neural firing rates

zt = f(xt) + qt (1)

where we expect the firing activity zt to be noisy observations of a stochastic

process and where qt is a noise vector drawn from some distribution. Note that

this generative model is descriptive rather than mechanistic – it does not say how

the spatio-temporal dynamics of neural networks encode movement.

With generative approach, the problem of modeling the neural code has four

components:

1. What neural data should be modeled (e.g. spikes, rates, local field potentials,

etc.)?

2. What behavioral variables are important (e.g. joint angles, torques, muscle

activation, hand direction, etc.)?

3. What functional relationship between behavior and neural activity is appropriate

(e.g. linear or any number of non-linear functions)?

4. What model the “noise” should be used (noise may arise from the stochastic

nature of the neurons as well as electrical noise, failures in spike detection/sorting

and more amorphous inadequacies of the functional model)?
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θ

Figure 4 Cosine tuning. The firing rate of a cell (jagged curve) as a function of hand
direction θt. This data is well fit by a so called “cosine tuning function” (smooth curve).
The direction of maximal firing, θ, is referred to as the preferred direction.

In addressing the first question, here we focus on firing rates computed from

spike counts in non-overlapping 70ms time bins. Firing rates of cells in MI have

been long known to be modulated by hand motions and provide a reasonable input

signal for neural decoding. While we could work with spike trains, this complicates

the probabilistic modeling problem [32].

The next choice pertains to the behavioral variables xt we wish to model.

Candidates here might include limb joint angles, torques, or muscle activity. While

each of these has been shown to be correlated with neural firing rates, there is a

simpler representation for the control of computer cursors: hand position, velocity

and acceleration. These kinematic parameters have also been shown to be related to

modulation of firing rates. The choice here however is not completely independent

of the next problem which is the choice of the function f .

While f could be an arbitrary function (e.g. as embodied in an artificial neural

network (ANN) [29]) we can impose some constraints on its choice. Low dimensional

parametric models, particularly linear ones, are desirable because they are easy to

fit to relatively small amounts of data without overfitting. A second design criterion

might be “interpretability” which ANN’s lack.

In terms of interpretability, linear models have a distinct advantage in that they

are a generalization of well known models of motor cortical coding. One of the
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Figure 5 Linear tuning functions. (a) Firing rate as a function of hand velocity for
one cell. Light colors correspond to higher firing rates than dark colors. Note that black
corresponds to regions of velocity space that were never observed. On the left of (a) is a
normalized histogram of the firing rates while on the right is the linear fit to this data.
(b) A different cells shows approximately linear tuning with respect to hand position on a
2D plane.

hallmarks of cells in arm area of MI is that they are “directionally tuned” [8, 20].

This theory of motor cortical coding suggests that cells have a “preferred direction”

and when the hand moves in this direction a cell’s firing rate is maximal. This is

illustrated in Figure 4 for a representative cell from our data. Mathematically the

firing rate, zt, of a cell at time t can be expressed as the following function of hand

direction θt

zt = h0 + h cos(θt − θ) = h0 + hx cos(θt) + hy sin(θt) (2)

where the hi are scalar values that can be fit to the data for a particular cell. Note

that this equation is in the same form as our generative model above but that there

is no explicit model of the noise.

The story does not end with directional tuning however. Moran and Schwartz

[16] for example noted that firing rates of MI cells increase with the speed at which

a hand movement is performed; that is

zt = st(h0 + h cos(θt − θ)) = h∗

0
+ h∗

xvt,x + h∗

yvty
(3)

where the h∗

i are, once again, scalar values and vt,x and vt,y represent the velocity

of the hand in the x and y direction respectively. Figure 5a illustrates this roughly

linear velocity tuning for one motor cortical neuron.
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The above equation then suggests that the firing rate of these cells is simply a

linear function of hand velocity. Again this is not the whole story. Firing rates of

these cells may also be linearly tuned to hand position [12] and hand acceleration

[5] and possibly even higher order derivatives of the hand motion [34]. Figure 5b

shows the firing activity of a cell that is roughly linearly tuned to position. For a

thorough treatment see [18].

Taken together these findings suggest that firing rates may be approximated as a

linear combination of simple hand kinematics (position, velocity and acceleration);

that is

zt = Hxt (4)

where, if zt is a vector of n cells’ firing rates and xt = [xt, yt, vt,x, vt,y, at,x, at,y]
T

contains the hand kinematics at time t, H is a n × 6 matrix that relates hand

pose/motion to firing rates. The inclusion of the all these kinematic terms (position,

velocity and acceleration) in the model turns out to be important. It has been

noted that not all cells in primary motor cortex are equally tuned to each of these

variables; some cells are modulated more by one variable or another [18].

It is important to note that this model is a strict generalization of the traditional

model of directional tuning. Previous decoding models such as the population

vector method rely on tuning for direction or speed and direction [20, 21]. These

parameters are included in the linear model along with position and acceleration.

We now come to the final design choice in the generative framework namely:

what noise model should we use? Note first that firing rates are strictly positive

and, over relatively small time windows, exhibit a roughly Poisson distribution. As a

mathematical convenience however we would prefer to model the noise as Gaussian

which will admit efficient inference algorithms as described in the following section.
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To facilitate such a model we first center the firing rates by subtracting the vector of

mean firing rates from all the data; the firing rates are no longer strictly positive. We

do the same for the hand kinematics. We then approximate the noise as Gaussian;

that is qt ∼ N(0, Q).

Unlike previous approaches, this generative model explicitly (if only approxi-

mately) models the noise in the observations. In particular we take Q to be a full

error covariance matrix which models correlations in the noise among the cells. This

is critical for accurate modeling since any model is going to be an approximation

to the truth and there may be other, hidden, causes of firing rate modulation that

may cause correlated errors in the observed firing rates.

0.4 Decoding

If I could find ... a code which translates the relation between the reading of the encephalo-

graph and the mental image ... the brain could communicate with me.

Curt Siodmak, Donovan’s Brain [24].

The goal of motor-cortical decoding is to recover the intended movement, for

example hand kinematics xt, given a sequence of observed firing rates Zt =

[zt . . . z1]. Probabilistically we would like to represent the a posteriori probability

of the hand motion p(xt|Zt). To represent this probability we first make a few

simplifying assumptions that prove quite reasonable in practice. For example, we

assume that the hand kinematics at time t are independent of those at time t − 2

and earlier conditioned on xt−1. This gives a simple form for the a priori probability

of hand kinematics

p(xt|Xt−1) = p(xt|xt−1, . . . ,x1) = p(xt|xt−1). (5)
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We also assume that, given the kinematics xt at time t, the firing rates at time t

are conditionally independent of the hand kinematics at earlier times. This gives a

simple form for the likelihood of firing rates conditioned on hand kinematics

p(zt|Xt) = p(zt|xt). (6)

With these assumptions, Bayes rule can be used to derive an expression for the

posterior probability in terms of the likelihood the prior

p(xt|Zt) ∝ p(zt|xt)

∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1. (7)

A “decoded” value for xt can then be obtained by either computing the expected

value or the maximum a posteriori value of p(xt|Zt).

This Bayesian formulation is very general and the likelihood and prior can be

arbitrary. In the general case, the integral in (7) is problematic and must be

computed using Monte Carlo sampling methods. For the recursive estimation of

p(xt|Zt) this inference takes the form of a “particle filter” which has been applied

to neural decoding [2, 6, 7]. These methods however are computationally intensive

and not yet appropriate for real-time decoding.

By making a few more simplifying assumptions however, inference with this

Bayesian formulation becomes straightforward. In particular we observe that the

prior probability of hand motions in our task is well approximated by a linear

Gaussian model; that is

xt = Axt−1 + wt (8)

where A is known as a state matrix that models the change in kinematics from one

time to the next and the noise, wt ∼ N(0, W ), is normally distributed with mean

zero and covariance W .
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Assuming that the kinematics x0 is normally distributed at time 0, then xt

is normally distributed. This is convenient since it implies that firing rates zt =

Hxt +qt conditioned on xt are also normally distributed. While this assumption of

Gaussian-distributed firing rates is only approximation, performing a square root

transformation of the firing rates improves the approximation; for more details the

reader is referred to [7, 34].

With these assumptions, the likelihood term in (7) becomes

p(zt|xt) ∝ exp

(

−
1

2
(zt − Hxt)

T Q−1(zt − Hxt)

)

. (9)

The assumptions tell us how firing rates are generated from intended hand move-

ments. Bayes rule tells us how to take such a generative model of firing rates and

“turn it around” for the purpose of decoding hand kinematics from observed firing

rates.

The linear and Gaussian assumptions mean that fitting the parameters H , Q, A

and W is straightforward via least squares regression on training data [34]. Also,

given linear Gaussian expressions for the likelihood and prior, the resulting posterior

is also Gaussian. Estimating this Gaussian posterior can be done very easily and

efficiently using the Kalman filter [11, 28] since the update of the posterior at each

time instant can be performed in closed form. For details of the algorithm and its

implementation for neural decoding, the reader is referred to [34].

A few example reconstructions of hand trajectories are shown in Figure 6 in which

we display the expected hand kinematics, xt, at each time instant computed from

test data not used to train the model. Reconstructed hand trajectories qualitatively

match the true trajectories and quantitatively compare favorably to the state of the

art (see [34]). The Kalman filter provides a computationally efficient and accurate

method for neural decoding that is directly derived from our models of the neural



14

Figure 6 Reconstructed trajectories (portions of 1min test data – each plot shows 50
time instants (3.5s)): true target trajectory (dashed) and reconstruction using the Kalman
filter (solid); from [34].

code. Experiments in monkeys show that the method provides effective on-line

cursor control [35]. In particular, Wu et al. [35] showed a 50% improvement in the

number of targets a monkey could hit in a given period of time using the Kalman

filter as compared with a more traditional, non-generative, linear regression method

[3, 22].

There is one additional detail that is relevant for accurate decoding. Changes in

the firing rates of the cells tend to precede the observed activity. Consequently it

is appropriate to train the model with a built in lag j such that

zt−j = Hxt + qt. (10)

A fixed lag of approximately 140ms improves decoding accuracy. The lag for each

cell however may differ and fitting individual lags improves decoding further but

complicates learning the model parameters [34]. Wu et al. [34] found that the

Kalman filter with a 140ms lag reconstructed hand trajectories for this data with

with a mean squared error (MSE) in hand position of 5.87cm2 while a non-uniform

lag, optimized for each cell, reduced the MSE to 4.76cm2.

They also observed the value of representing a full error covariance matrix in

the generative model. Using only a diagonal covariance matrix, which assumes
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conditional independence of the firing rates of different cells, resulted in an increase

in the MSE from 5.87cm2 to 6.91cm2.

0.5 Interfaces

The big machine.... Operated by remote control.... Operated by the electromagnetic impulses

of individual Krell brains.

The Forbidden Planet [1].

There have now been numerous demonstrations of neural control of devices using

different recording technologies and different decoding algorithms [3, 10, 21, 22, 25,

35]. In the case of cortical implants these methods can be classified according to

two kinds of interfaces: discrete or continuous.

In the discrete task a monkey has one of a fixed number of targets which they

must select by either direct arm motion or neural signals [17, 23]. Neural decoding

in this case reduces to a discrete classification task. Furthermore, in the case

that all the targets are equally likely (i.e. the prior is uninformative), Bayesian

classification reduces to maximum-likelihood classification. Given a population of

neurons in primary motor cortex or pre-motor areas this classification task can be

performed extremely accurately. In fact, under brain control monkeys can respond

more rapidly than by making actual arm motions and they quickly learn to perform

target selection without moving their arm [17, 23].

A variety of interfaces have been developed for disabled people using discrete

selection such as this (though using EEG and not neural implants). Interfaces based

on selection of a small number of states (e.g. binary) can be cumbersome to use. It

is not yet known however how many discrete states can be recognized from a neural

population of a given size.
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Figure 7 Closed-loop neural cursor control. Neural signals directly control cursor motion
while a subject receives feedback about the cursor position through their visual system.
In our case the neural signals are population firing rates and the decoding algorithm is
the Kalman filter.

The alternative which we have pursued here is to recover a continuous control

signal. The closed-loop control task is illustrated in Figure 7 where the brain controls

a 2D cursor position on a computer screen and a monkey (or human) receives visual

feedback by viewing the cursor on a monitor. We suspect that for robot control tasks

(e.g. moving a wheelchair or robot arm) that continuous control will be preferable

because it is inherently more flexible. It is also, however, more noise prone so there

is a tradeoff that gives higher spatial resolution with less accuracy. The tradeoffs

between discrete and continuous methods and their relevance for rehabilitation

applications deserve further study.

One promising direction combines discrete and continuous control in a single

interface [31]. The Bayesian decoding framework can easily accommodate a mixed

state space with both continuous (2D) and discrete (task-orientated) parameters.

The generative model then involves first selecting the task (continuous or discrete)

and then generating the observations conditioned on the task. Decoding is slightly

more complicated but can be achieved using a switching Kalman filter [33] or

particle filter [2, 6]. Recently, Wood et al. [31] used such an approach to decode
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whether or not a monkey was performing a 2D control task and, if so, to decode

the hand state with a linear Gaussian model. Such an approach holds promise for

flexible brain-machine interfaces in which the user can switch between a variety of

functions or control modes.

0.6 Discussion and Conclusions

The probabilistic modeling of the neural code presents many challenges. Beyond the

simple linear Gaussian models explored here there is likely an advantage in modeling

the non-Gaussian and non-linear nature of neural activity [7, 13, 33]. Beyond firing

rates we may wish to formulate probabilistic models of spike trains [26]. Efficient

learning and decoding methods however do not currently exist for non-Gaussian,

non-linear models of point processes. There is an opportunity here to develop new

machine learning methods for capturing the high dimensional relationship between

motor behavior and neural firing.

Moreover, here we only consider information from primary motor cortex. Ad-

ditional information may be obtained from pre-motor and parietal areas. The

Bayesian framework we have proposed provides a solid foundation on which to

integrate sources of information from various brain areas in a principled way.

The approach does not, however, necessarily provide any new insight into how

the brain controls movement. Like the approaches it generalizes (e.g. the popu-

lation vector method), the relationships between firing rates and kinematics are

purely descriptive. One cannot infer, for example, that the brain is somehow im-

plementing a Kalman filter. Rather, all these methods describe attributes of the

neural computation and not the computation itself.

This paper only hints at the prosthetic applications of these methods. While

Bayesian methods have been used for closed-loop neural control of cursors by
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monkeys [34], the use of this or any decoding method in paralyzed humans remains

to be explored. Particularly important in the case of paralyzed humans will be the

issue of training and adaptation. Training data for the encoding model here, for

example, will have to rely on imagined movement. Whether human users will be

able to adapt their neural signals to improve control with a given decoder remains

to be seen and may prove critical for practical motor-cortical control of devices.

While current methods provide a proof of concept that cortical implants can

provide reliable control signals over extended periods of time there is still much

work to be done. Current continuous decoding results still provide a somewhat

“jerky” reconstruction – new decoding/control algorithms for damping the cursor

reconstruction may enable a wider range of applications. The great challenge

however is to move beyond simple 2D or 3D cursor control to ultimately give

patients high-dimensional control of devices such as dexterous robot hands.
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