
 
 

  

Abstract—Basic neural prosthetic control of a computer 
cursor has been recently demonstrated by Hochberg et al. [1] 
using the BrainGate system (Cyberkinetics Neurotechnology 
Systems, Inc.).  While these results demonstrate the feasibility of 
intracortically-driven prostheses for humans with paralysis, a 
practical cursor-based computer interface requires more 
precise cursor control and the ability to “click” on areas of 
interest. Here we present the first practical point and click 
device that decodes both continuous states (e.g. cursor 
kinematics) and discrete states (e.g. click states) from a single 
neural population in human motor cortex. We describe a 
probabilistic multi-state decoder and the necessary training 
paradigms that enable point and click cursor control by a 
human with tetraplegia using an implanted microelectrode 
array. We present results from multiple recording sessions and 
quantify the point and click performance. 

I. INTRODUCTION 
EURAL interface systems (NISs) based upon an 
intracortical sensor aim to restore lost function to 

paralyzed humans by sensing movement-related activity of 
neurons, decoding this activity into control signals and using 
these signals to control external devices or the person’s own 
limbs. Initial results from a human NIS [1] demonstrated that 
neural spiking activity could be detected from the motor 
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cortex of humans with long-term paralysis, decoded, and used 
for voluntary control of prosthetic devices including robotic 
arms and computer cursors. Despite this initial success, the 
quality of neural cursor control in these initial demonstrations 
was below the level of cursor use typically achieved by 
able-bodied humans using standard pointing devices. This 
human NIS [1] used a linear regression method to directly 
decode cursor position from a history of neural firing rates. 
Studies in able-bodied monkeys, however, have demonstrated 
motor cortical neurons code for velocity [2] and that 
improved cursor control could be obtained by decoding 
velocity using a Kalman filter [3]. Recent work by our group, 
in collaboration with Cyberkinetics Neurotechnology 
Systems, Inc. (Foxborough, MA), has similarly improved the 
quality of human cursor control by decoding cursor velocity 
from motor cortical activity using a Kalman filter [4]. The 
results from multiple recording sessions showed more stable 
and accurate cursor control for reaching designated targets. 

Beyond precise cursor positioning, practical applications 
of computer control typically assume the ability to click on 
targets of interest (e.g. select menu items on a computer 
screen). For an NIS, this point and click capability requires 
the simultaneous decoding of both continuous (cursor 
motion) and discrete (clicking) states in real time from a 
population of motor cortical neurons. Multiple recording 
devices might provide separate signals for continuous 
movement and click states but in our work a single recording 
array was used. Multi-state decoding then requires the 
extraction of both continuous and discrete states from a single 
neural population.  Additionally this neural population is 
currently small (on the order of tens of cells) and hence much 
smaller than the number of neurons engaged in the actual 
performance of such a task.  

Preliminary studies in non-human primates have shown 
that it was possible to decode both continuous and discrete 
states from the same population of motor cortical cells.  
Darmanjian et al. [5] decoded movement/rest states using 
hidden Markov models (HMMs) and hand position using 
multiple linear filters from multiple motor cortical areas of a 
monkey. Wood et al. [6] developed a Bayesian method to 
decode from MI firing activity both a discrete state, 
representing whether a monkey was performing a task or not, 
and the continuous kinematics of the monkey’s arm 
movements. In this method, a discrete state was decoded 
using a linear discriminant analysis (LDA) classifier [7] and 
embedded into a particle filtering algorithm [8] for decoding 
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continuous kinematics.  
To decode discrete and continuous states from human 

motor cortical neural activity, we present a multi-state 
decoder based on the model of Wood et al. [6] but modified to 
use a Kalman filter decoder for real time performance. We 
also present the associated training paradigms sufficient for 
training the multi-state decoding algorithm. We report here 
results of using the multi-state decoder for point and click 
cursor control from one pilot clinical trial participant who is 
tetraplegic secondary to a brainstem stroke. We quantify the 
performance of the multi-state decoder during an eight 
direction radial-target acquisition task, using various metrics, 
including the target acquisition rate, movement time and the 
variability of movement.  

II. FILTER BUILDING AND EVALUATION 
Effective use of an NIS requires training of the decoding 

algorithm. These training paradigms aim to extract useful 
signals from imagined motion and relate these to the control 
of a cursor.  In a paralyzed human training of the decoding 
algorithm is complicated by the fact that there is no 
independent, observable measure of intended movement as in 
able-bodied monkeys.  As a consequence, the design of 
training paradigms takes on increased importance. The 
training for multi-state decoding has two components: one for 
the continuous state and the other for click state.  

Training of a Kalman filter for continuous state decoding 
was divided into “blocks” of open-loop (OL) and closed-loop 
(CL) phases. In OL blocks, the participant was shown a 
preprogrammed training cursor (TC) moving to targets on a 
computer monitor for 1.5 min. Although not controlling the 
TC, the participant was asked to imagine moving her arm or 
hand as if she was controlling it. The continuous state decoder 
was trained using a center-out paradigm in which one of four 
or eight visible peripheral targets was highlighted. The TC 
moved with a roughly bell-shaped velocity profile from the 
center circle to the target and stopped for 1 second. Then, the 
center circle was highlighted, and the TC retraced its 
trajectory back to the center circle. This sequence was 
repeated with different highlighted peripheral targets for 1.5 
minutes. Neural spiking activity from multiple neurons was 
simultaneously recorded from the participant’s motor cortex 
using the methods described in [1].  The synchronous TC 
velocity and recorded neural activity during imagined 
movement were used to train a Kalman filter decoding 
algorithm [9]. 

In CL blocks (1.5 min each), two cursors were displayed on 
the monitor: one was the TC and the other was a neural cursor 
(NC) that was driven by a control signal estimated from the 
neural activity using the Kalman filter. The participant was 
asked to imagine movements corresponding to TC movement 
as before while also being aware of the NC movement. 
Overall training typically involved 1 to 3 OL blocks which 
were used together to build an initial Kalman filter decoder, 
followed by a series of 4 to 6 CL blocks during which the 
Kalman filter decoder was retrained at the end of every other 

block using the data from previous 2 or 4 CL blocks.  
We augmented the above paradigm to also train the 

discrete (click) state component of the multi-state decoder. To 
that end, we introduced new training blocks in which discrete 
state training was inserted in between short (e.g. ~20 sec) 
epochs of closed-loop continuous movement training with TC 
and NC. After three to five executions of target acquisition by 
TC (and tracking by NC), all cursors and targets were hidden 
and an instructive word such as “squeeze” appeared on the 
monitor for one and half seconds during which time the 
participant was to imagine squeezing her hand. This set of 
continuous and discrete state presentations repeated several 
times in each block.  

The neural activity recorded during imagined squeezing 
and continuous cursor movements was used to train a linear 
classifier to discriminate the two states squeeze/click versus 
movement. Note that during the discrete state training there 
was no visual feedback about classification performance (i.e. 
there was no discrete equivalent of the NC).  

After training, the decoding algorithm was held fixed and 
an eight-direction radial-target acquisition task was used to 
evaluate point and click performance. At the beginning of the 
task, eight circle targets of an equal size were radially 
positioned with angles {0º, 45º, 90º, 135º, 180º, 225º, 270º, 
315º} and the NC was placed at the center on the monitor. 
Then, one of eight targets was highlighted and the participant 
was instructed to move the NC to that target and click it. 
When the target was clicked, its color changed. A single trial 
of the task was completed when the (correct or incorrect) 
target was clicked or the timeout period (e.g. 9sec) expired. 
After a trial, the center target was highlighted and the 
participant had to move the NC back to touch the center circle 
to initiate the next trial (no click was required in the center 
target). The sequence of targets for each trial was 
pseudo-randomly ordered so that the number of trials per 
target was distributed as evenly as possible. The radial 
distance and the target size remained unchanged over 
recording sessions. We analyzed three recording sessions, 
across which a total of 160 trials were performed. 

III. DECODING ALGORITHMS  
In the decoding method of Wood et al. [6], a mixed 

discrete/continuous state space was employed. The Bayesian 
model for this mixed-state representation required a 
non-linear likelihood function and exploited a non-parametric 
particle filter for decoding. This particle filtering approach 
was computationally intensive and, therefore, not appropriate 
for real-time decoding in an NIS. To overcome this issue, we 
simplify this Bayesian approach by separating the inference 
of discrete and continuous state variables.    

The variables used in our method are as follows: γk is a 
discrete state variable at a time instance k, representing 
whether the cursor is in a click or a continuous movement 
state; xk is a continuous state (e.g. cursor velocity) vector; zk is 
a neural population firing rate vector estimated by spike 
counts within a non-overlapping time bin (100ms); Zk = [zk, 



 
 

zk-1, …, zk-L]T is a short-term (0.5 ~ 1 sec) history vector of 
neural firing rates, where L is the history length.  

For discrete states, we model the posterior of γk given the 
neural firing activity Zk and γk-1: 

)|()|(),|( 11 −− ⋅= kkkkkkk pZpZp γγγγγ , (1) 
where we assume independence between the current neural 
activity and previous discrete states. p(γk | Zk) is modeled by 
an LDA classifier [7]: 
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where γ(0) and γ(1) represent the click and the movement states, 
respectively. G(α;β,σ) denotes a Gaussian distribution of a 
random variable α with a mean β and a standard deviation σ. 
w is a projection vector computed as: 
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where mj and Cj are the mean and a covariance of a set of {Zk} 
which belongs to state γ(j). Here we denote this set of {Zk} as 
Zj.  Once w is obtained, µj and σj are computed by taking the 
mean and the standard deviation of the projected firing rates, 
wTZj. The state transition probability, p(γk | γk-1) is empirically 
estimated from the data. Finally, we assume the prior 
probability of either state is  p(γk = γ(j)) = 0.5.  

Next, we build a Kalman filter to decode cursor movement 
during the continuous state. The Kalman filter is trained using 
the continuous movement data. From these data, we learn the 
parameters, {H, Q, A, W} for modeling the likelihood and 
prior of the Kalman filter: 
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using the least squares method. In our model, xk represents the 
x and y components of velocity. For details of training such a 
method on monkey data, where the kinematics xk are 
observable, see [9]. Since the intended kinematics are 
unobserved, we train the model using the velocity of the TC.   

Once we train the classifier and the Kalman filter, motor 
signals can be decoded from novel neural firing activity. To 
begin, we initialize the velocity vector (x0 = [0,0]T), the 
discrete state (γ0 = γ(1)) and the history of firing rates (Z0 = 
[0…0]T). Then, with a novel firing rate vector at each time 
instance k, the posterior of γk is computed using equation (1). 
If the posterior probability of the movement state is higher 

than the click state, then γk = γ(1) and velocity is decoded using 
the Kalman filter to move the NC (see [3][9] for details of the 
Kalman filter decoding). Otherwise, γk = γ(0), and a click 
signal is generated with zero cursor velocity.   

IV. RESULTS 
The method was evaluated in one tetraplegic pilot trial 

participant whose paralysis resulted from a brainstem stroke 
that occurred nine years prior to trial enrollment. Neural 
population activity was recorded from her intact motor cortex 
using a Cyberkinetics microelectrode array. The training 
procedures from above were followed. The participant then 
moved the neural cursor using imagined movement to point 
and click on eight radial targets. 

Fig 1 presents the mean paths of the NC towards each of 
eight targets for three sessions recorded on separate days 
(denoted as sessions 1, 2 and 3). To estimate the mean path, 
individual paths to each target were linearly interpolated to 
have the same number of time samples. Then, the mean 
vector was calculated for each sample point. The actual NC 
paths during the third session are also presented to illustrate 
the movement variability. 

To quantify the point and click performance, we used the 
following metrics: First, the error rate (ER) was measured as 
the percentage of the trials in which the incorrect target was 
clicked or the timeout period expired before the target was 
clicked. The timeout period was set to 30 sec for sessions 1 
and 2, and 9 sec for session 3. To evaluate discrete state 
decoding performance we count the number of times when 
the click signal was generated before the target was acquired 
per trial, termed as a false click rate (FCR). Second, we 
measured the movement time (MT) from the onset of the 
target to the time when the target was clicked. The MT was 
measured only for the trials when the correct target was 
clicked within the timeout period. Third, we measured the 
stability of the point-to-point NC movement using the 
movement variability (MV) [10]. For each trial, we defined a 
task axis connecting the starting NC point to the target. Then, 
the shortest Euclidean distance from each sample position of 
the NC to the task axis was calculated. The MV was defined 
as the standard deviation of these distances. Smaller MV 
indicates a straighter NC path. 

    
 (a) session 1: n = 37 (b) session 2: n = 38 (c) session 3: n = 57 (d) session 3 
 
Fig. 1.  Human neural cursor control in an 8-direction point-and-click task. (a)-(c) The mean paths of the neural cursor from the center to 8 radial 
targets (peripheral circles) for each of three recording sessions. n is the number of recorded single/multi units. (d) The actual NC paths in session 3. 



 
 

These performance metrics were used to evaluate the 
cursor control performance for three recording sessions, as 
shown in Table 1. The ER results demonstrate that the 
participant was able to click 100% of the correct targets 
within 30 sec and 96.1% within 9 sec. Also, for all three 
sessions, the errors were registered only when timeout 
expired – there were no false target acquisition. The FCR 
results show that the average number of false clicks before 
reaching targets was 0.3 ~ 1 for each point-and-click trial. 
Note that the false click did not end the trial since clicking on 
the blank space was allowed in the task. The MV results were 
relatively small compared to the screen size (366mm x 305 
mm (W x H)). We compare the MV measures to the results 
from other pointing device experiments [10] where subjects 
with Parkinson’s disease (PD) and essential tremor (ET) 
performed point and click using the mouse, trackball and 
joystick. The mean MV results from that study for using the 
mouse, trackball and joystick were: 15.39, 18.08 and 19.98 
mm, for the PD subjects; and 18.84, 21.95 and 26.23 mm for 
the ET subjects, respectively. These are roughly comparable 
to our NIS cursor control performance. 

V. CONCLUSION 
We have demonstrated that continuous and discrete motor 

signals can be simultaneously decoded from a single 
population of motor cortical neurons in a human with 
tetraplegia. In particular, we decoded a continuous 2D 
velocity signal and a discrete click signal using a model that 
combined an LDA classifier for discrete decoding with a 
Kalman filter for continuous decoding. We also presented an 
on-line training method for paralyzed users that relied on 
imagined movement. We quantified the point-and-click 
performance of a single participant using this NIS over 
multiple recording sessions. To our knowledge, this is the 
first demonstration of point-and-click control in an NIS. 

In our current work, we are conducting more extensive 
performance evaluation by varying target sizes and 
movement distances, which will more closely represent the 
type of standard graphical user interfaces typically adopted in 
modern computer software. We are also investigating the use 
of standard human computer interaction (HCI) metrics for 
pointing devices [11]. Using these standard metrics, it will be 
possible to directly compare the performance of our NIS with 
other devices controlled by able-bodied subjects.  

We plan to replicate this study with additional participants, 
and to develop more advanced decoders which we anticipate 
will further improve the potential for NISs to provide rapid 
and precise control over a computer cursor and other assistive 
devices by people with tetraplegia. 
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TABLE I 
POINT-AND-CLICK PERFORMANCE MEASURES 

Metric Session 1 
(n = 37)* 

Session 2 
(n = 38) 

Session 3 
(n = 57) Average 

ER (%) 0 [30s] 0 [30s] 3.9 [9s]  
FCR 0.81 1.03 0.31 0.72 
MT (sec) 7.89 6.10 5.70 6.43 

MV (mm) 16.79 ± 8.16 17.87 ± 12.74 15.17 ± 9.13 16.73 ± 10.61 

* n = the number of recorded neuronal single/multi units 


