
Model Transport: Towards Scalable Transfer Learning on Manifolds

Oren Freifeld Søren Hauberg Michael J. Black
MIT Technical University of Denmark MPI for Intelligent Systems

Introduction

I Manifold-valued data are ubiquitous in computer vision: surface normals,
shape spaces, histogram-valued features, Symmetric Positive-Definite (SPD)
matrices, the Grassmannian, etc.

I Statistics on manifolds is often done via tangent-space models; e.g.,
Gaussians, PCA, regression, classifiers, etc.

I One form of transfer-learning (TL) leverages a model learned in one region
of Rn to improve a model in another region.

I Goal: Exploit TL ideas in modeling manifold-valued data.
I Problem 1: on a manifold, conventional Rn-TL fails.
I Thought: Parallel Transport (PT) the data.
I Problem 2: this is not scalable.

Solution: Transport the model, not the data

Key Contributions
I Scalability: We show how models can be transported.

=⇒ # computations is fixed w.r.t. # data points; no need to store the data.
I Optimality: We show that for these models, PT and learning commute.

Parallel Transport (PT)
I An established tool to move vectors between tangent spaces.
I A metric parallel transport (MPT): inner-product-preserving PT.
I Both MPT and non-metric PT are widely used in computer vision

– but focus has been on expensive data transport.
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Covariance/PCA Transport
(In short: keep the std. dev., transport the eig. vecs)

(a) Data models (b) Rn-TL fails (c) Model transport
Figure: Model transport for improving covariance estimation.

I The transported model can improve the small-sample model.
I Point: only the eigen vectors need to be transported.

Regression/Classification Transport
(In short: transport the coefficient vector)

(a) Labeled training data and a
logistic-regression classifier

(b) Original classifier performs
poorly in a another region

(c) Classification
transport

I Point: only a single vector needs to be transported.
I Similar results hold for linear-regression and SVM (PT the support vectors).

Why Does This Work?
I M: an n-dimensional manifold; x̃ ∈ TqM: the (metric) PT of x ∈ TpM.

Data: {xi}N
i=1 ⊂ TpM X , [x1, . . . , xN] X̃ , [x̃1, . . . , x̃N] (PT of the data)

Proposition 1 (Covariance/PCA Transport):

Let VSUT SVD
= X , VS2V T eig. dec.

= XX T , and Ṽ ,
PT of eigenvectors

[ṽ1, . . . , ṽn] where
[v1, . . . , vn] = V . Then:

(a) ṼSUT SVD
= X̃ and ṼS2Ṽ

T eig. dec.
= X̃ X̃ T .

(b) If k < n, then the k -dimensional PCA model of {x̃i}N
i=1 ⊂ TqM is given by

{ṽi}k
i=1 and {Si ,i/

√
N − 1}k

i=1.

I 〈·, ·〉p : (x , y) 7→ xTApy and 〈·, ·〉q : (x , y) 7→ xTAqy are inner products on TpM
and TqM (Ap,Aq ∈ SPD). Data labels: {yi}N

i=1 ⊂ R. L : TpM 7→ TqM: the linear
map associated with an MPT. A linear regression model TpM → R:

x 7→ xTα + α0 = 〈x ,A−1
p α〉p + α0 α0 ∈ R α,A−1

p α ∈ TpM .

I li : R→ R+: a loss function associated with yi; e.g., li : ŷi 7→ (ŷi − yi)
2.

Proposition 2 (Linear-Regression Transport):

β, β0 = arg min
α∈TpM,α0∈R

N∑
i=1

li(xT
i α + α0) =⇒ γ , AqLA−1

p β = arg min
δ∈TqM

N∑
i=1

li((Lxi)
Tδ + β0)

Application: Covariance Transport
Woman shapes improve a shape model of men while shapes of people with
normal Body-Mass Index (BMI) improve a shape model of high-BMI people.

Figure: Mean shapes computed from:
1000 female shapes (left); 50 male
shapes (middle); 50 shapes of women
with high-BMI (right).

Figure: Reconstruction error measured in Squared
Geodesic Error averaged over the test set as well as all
of the 21550 triangles in the mesh. Geodesics here are
w.r.t. the manifold from [Freifeld et al. ECCV ’12].

Improved Modeling of Male Shape using Female Shape

(a) VL

(women)
(b) VS

(men)
(c) VΓ

(PT)
(d) VF

(Fusion)
Figure: Model mean error: Genders. Blue and red indicate small and large errors resp. Heat maps
are overlaid over the points of tangency associated with the models: p for (a), and q for (b-e).

Improved Modeling of High-BMI Shape using Normal-BMI Shape

(a) VL

(Normal BMI)
(b) VS

(High BMI)
(c) VΓ

(PT)
(d) VF

(Fusion)
Figure: Model mean error: BMI.

Application: Classifier Transport

Figure: Images from the 1st dataset. Left: class
1. Right: Class 2. Labels are known.

Figure: Images from the 2nd dataset. Left:
class 1. Right: Class 2. Labels withheld.

I Features were encoded as SPD matrices. PT improves logistic-regression
classifier results from 59% to 67%.

I Point: the same performance gain was obtained regardless whether we
transported the data (168 vectors) or the model (a single vector).


