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» Scalability: We show how models can be transported.

—> # computations is fixed w.r.t. # data points; no need to store the data. Why Does This Work?

» Optimality: We show that for these models, PT and learning commute.

Introduction Covariance/PCA Transport
(|n short: keep the std. dev., transport the eig_ vecs) Woman shapes improve a shape model of men while shapes of people with
normal Body-Mass Index (BMI) improve a shape model of high-BMI people.
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Figure: Mean shapes computed from: | (Women)  (Men) (Par. Tran.) (Fuse)  (BMI < 30) (30 < BMI) (Par. ran.) (Fuse)
1000 female shapes (left); 50 male Figure: Reconstruction error measured in Squared
shapes (middle); 50 shapes of women Ge€odesic Error averaged over the test set as well as all
(2) Data models (b) R"-TL fails () Model transport with high-BMI (right). of the 21550 triangles in the mesh. Geodesics here are
| | | | \©) N P w.r.t. the manifold from [Freifeld et al. ECCV ’12].
Figure: Model transport for improving covariance estimation. Improved Modeling of Male Shape using Female Shape
» The transported model can improve the small-sample model. o
_ o | o » Point: only the eigen vectors need to be transported. .
» Manifold-valued data are ubiquitous in computer vision: surface normals,
shape spaces, histogram-valued features, Symmetric Positive-Definite (SPD) : . on :
ma’[riceS, the Grassmannian, etc. RegreSS|On/C|aSS|f|Cat|On Transport
~ Statistics on manifolds is often done via tangent-space models; e.g., (|n short: transport the coefficient Vec’[Or)
Gaussians, PCA, regression, classifiers, etc.
» One form of transfer-learning (TL) leverages a model learned in one region b
of R"” to improve a model in another region. B
» Goal: Exploit TL ideas in modeling manifold-valued data. I" ‘ |
» Problem 1: on a manifold, conventional R"-TL fails. J <
» Thought: Parallel Transport (PT) the data. (a) Vi (b) Vs (c) Vr (d) Vi
» Problem 2: this is not scalable. . y d(Vlvomen) o (mBeln) i t(F’T) - (Fusion) o
. . . 1T T : igure. wviodel mean error. Genders. blue and red inaicate simall ana iarge errors resp. meat maps
| Solution: TranspOrt the mOdel, not the data | I((? éitﬁgﬁfsrg:ggzgcgasgfg;d 4 S()))oac?éns Iacriﬁfﬁ g;erregie(;:]orms (©) ?::ﬁggfr?tlon are overlaid over the points of tangency associated with the models: p for (a), and g for (b-e).
Key Contributions » Point: only a single vector needs to be transported. Improved Modeling of Igh-BMI Shape using Normal-BMI Shape
» Similar results hold for linear-regression and SVM (PT the support vectors). ; I

» M: an n-dimensional manifold; x € ToM: the (metric) PT of x € T,M.
Parallel Transport (PT) Data: {x}N, c T,M X2[xi,....xn] X2 [%,..., %] (PT of the data)
Proposition 1 (Covariance/PCA Transport):

» An established tool to move vectors between tangent spaces. PT of eigenvectors

» A metric parallel transport (MPT): inner-product-preserving PT. Let VSUT X X, vs2vT P00 xx T'and V £ [in,...,7] where
» Both MPT and non-metric PT are widely used in computer vision [Vi, ..., Vo] = V. Then: |
— but focus has been on expensive data transport. - (@) VSUT ¥ X and /82 (/7 eig._dec. & g1 @) Vi (b) Vs ©) U A Vi
N e S N S e (b) If k < n, then the k-dimensional PCA model of {x;}}¥, c T,M is given by (Normal BMI) (Righ BMI) (PT) (Fusion)

(v f'(:1 and {Si,i/\/N — 1}¢(:1. | Figure: Model mean error: BMI.

s (0 (X, y) = xTAgy and (-, g (x,¥) — x"Agy are inner products on T,M pplcatlon: QlaSSIfler rnSOrt
and T,M (A,, Aq € SPD). Data labels: {y; ,-’11 CR. L: ToM — TyM: the linear | a - “  , “, ,
map associated with an MPT. A linear regression model T,M — R: 1'¢) ! ) B AR

X—= X'a+ag = (X, AIE1O‘>P + ag ag € R a. AE1()4 c T,M. Figure: Images from the 1% dataset. Left: class Figure: I.ags from the 2" détaget. Left:
1. Right: Class 2. Labels are known. class 1. Right: Class 2. Labels withheld.

» | R — R,: aloss function associated with y;; e.g., i : Vi — (Vi — Vi)
Proposition 2 (Linear-Regression Transport):

» Features were encoded as SPD matrices. PT improves logistic-regression
Acknowledgments classifier results from 59% to 67%.
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