# Model Transport: Towards Scalable Transfer Learning on Manifolds



### Introduction



- Manifold-valued data are ubiquitous in computer vision: surface normals, shape spaces, histogram-valued features, Symmetric Positive-Definite (SPD) matrices, the Grassmannian, etc.
- Statistics on manifolds is often done via tangent-space models; e.g., Gaussians, PCA, regression, classifiers, etc.
- One form of transfer-learning (TL) leverages a model learned in one region of  $\mathbb{R}^n$  to improve a model in another region.
- **Goal:** Exploit TL ideas in modeling manifold-valued data.
- **Problem 1:** on a manifold, conventional  $\mathbb{R}^n$ -TL fails.
- Thought: Parallel Transport (PT) the data.
- Problem 2: this is not scalable.

# Solution: Transport the model, not the data

### Key Contributions

- Scalability: We show how models can be transported.  $\implies$  # computations is fixed w.r.t. # data points; no need to store the data.
- Optimality: We show that for these models, PT and learning commute.

## Parallel Transport (PT)

- An established tool to move vectors between tangent spaces.
- A metric parallel transport (MPT): inner-product-preserving PT.
- Both MPT and non-metric PT are widely used in computer vision – but focus has been on expensive data transport.





### Acknowledgments

This work is supported in part by NIH-NINDS EUREKA (R01-NS066311). S.H. is supported in part by the Villum Foundation and the Danish Council for Independent Research (Natural Sciences).

# Søren Hauberg

Oren Freifeld

MIT



(a) Data models

The transported model can improve the small-sample model. Point: only the eigen vectors need to be transported.





(a) Labeled training data and a (b) Original classifier performs logistic-regression classifier

- Point: only a single vector needs to be transported.

- **Proposition 1 (Covariance/PCA Transport):**
- $[v_1, ..., v_n] = V$ . Then:
- (a)  $\tilde{V}SU^T \stackrel{SVD}{=} \tilde{X}$  and  $\tilde{V}S^2\tilde{V}^T \stackrel{\text{eig. dec.}}{=} \tilde{X}\tilde{X}^T$ .
- $\{\tilde{v}_i\}_{i=1}^k \text{ and } \{S_{i,i}/\sqrt{N-1}\}_{i=1}^k$ .
- **Proposition 2 (Linear-Regression Transport):**

 $\beta, \beta_{0} = \operatorname*{arg\,min}_{\alpha \in T_{p}M, \alpha_{0} \in \mathbb{R}} \sum_{i=1}^{\prime \vee} I_{i}(x_{i}^{T}\alpha + \alpha_{0}) \Longrightarrow \gamma \triangleq ,$ 

$$\triangleq A_q L A_p^{-1} \beta = \operatorname*{arg\,min}_{\delta \in T_q M} \sum_{i=1}^N I_i((L x_i)^T \delta + \beta_0)$$







- Point: the same performance gain was obtained regardless whether we transported the data (168 vectors) or the model (a *single* vector).