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Abstract

We consider the intersection of two research fields:
transfer learning and statistics on manifolds. In particu-
lar, we consider, for manifold-valued data, transfer learn-
ing of tangent-space models such as Gaussians distribu-
tions, PCA, regression, or classifiers. Though one would
hope to simply use ordinary Rn-transfer learning ideas, the
manifold structure prevents it. We overcome this by basing
our method on inner-product-preserving parallel transport,
a well-known tool widely used in other problems of statis-
tics on manifolds in computer vision. At first, this straight-
forward idea seems to suffer from an obvious shortcom-
ing: Transporting large datasets is prohibitively expensive,
hindering scalability. Fortunately, with our approach, we
never transport data. Rather, we show how the statistical
models themselves can be transported, and prove that for
the tangent-space models above, the transport “commutes”
with learning. Consequently, our compact framework, ap-
plicable to a large class of manifolds, is not restricted by
the size of either the training or test sets. We demonstrate
the approach by transferring PCA and logistic-regression
models of real-world data involving 3D shapes and image
descriptors.

1. Introduction
In computer vision, manifold-valued data arise often.

The advantages of representing such data explicitly on a
manifold include a compact encoding of constraints, dis-
tance measures that are usually superior to ones from Rn,
and consistency. For such data, statistical modeling on the
manifold is generally better than statistical modeling in a
Euclidean space [12, 18, 29, 39]. Here we consider the first
scalable generalization, from Rn to Riemannian manifolds,
of certain types of transfer learning (TL). In particular, we
consider TL in the context of several popular tangent-space
models such as Gaussian distributions (Fig. 1b), PCA, clas-
sifiers, and simple linear regression. In so doing, we recast
TL on manifolds as TL between tangent spaces. This gen-

(a) Data on a manifold (b) Data models

(c) Ordinary translation (d) Model transport

Figure 1: Model Transport for covariance estimation. On
nonlinear manifolds, statistics of one class (red) are trans-
ported to improve a statistical model of another class (blue).
While ordinary translation is undefined (c), and data trans-
port is expensive, a model can be inexpensively transported
(green) while preserving data statistics (d).

eralizes those Rn-TL tasks where models learned in one re-
gion of Rn are utilized in another. Note, however, that we
do not claim that all Rn-TL tasks have this form.

Let M denote an n-dimensional manifold and let TpM
and TqM denote two tangent spaces to M , at points p, q ∈
M . One cannot simply apply models learned in TpM to
data in TqM as these, despite both being isomorphic to Rn,
are two different spaces: A model on TpM is usually not
even defined in TqM ; see Fig. 1c. Such obstacles, caused by
the curvature of M , do not arise in Rn-TL. To address this
we could parallel transport (PT) [7] the data from TpM to
TqM , learn a model of the transported data in TqM , and use



this model in TqM . In fact, this brings us back to the setting
of ordinary Rn-TL whose methods are now transparently
applicable. The question whether this idea is statistically
useful depends on the application and the data of interest;
our experiments show that the answer is often positive.

Unfortunately, this solution scales poorly: Transporting
data is expensive. This is particularly true for large datasets
or when the PT has no closed form. Also, the value of q
(which determines TqM ) is sometimes only available at test
time, and neither the transport nor the learning can be done
offline. Our key contribution is to prove that, for a fairly
large class of important models, one never has to transport
the data. Rather, not only is it possible to transport the
model but we also prove that the resulting model is iden-
tical to what would have been gained from the expensive
data-transport-based approach mentioned above. Loosely
speaking, we prove that learning commutes with parallel
transport. Consequently, the computational complexity of
our framework is not proportional to the size of the dataset;
rather, it is proportional to the complexity of the model. It
also frees us from having to store or access the training data
during test time.

Our model transport (MT) framework is straightforward
to apply yet it allows us to solve seemingly difficult prob-
lems with surprising results; e.g., we find that on a manifold
of mesh deformations [12], observations of people with nor-
mal Body-Mass Index (BMI) help modeling high-BMI peo-
ple. Similarly, we show that the transported shape model
of women, learned from many examples, improves a shape
model of men learned from only few examples. We also
show that MT is useful for classifiers of image descrip-
tors encoded as Symmetric Positive-Definite (SPD) matri-
ces [40]. To conclude, we present a framework that will en-
able researchers to apply Rn-TL ideas to manifold-valued
data while being transparently-scalable to large datasets.

2. Previous Work
Manifold-valued data are ubiquitous in computer vi-

sion. The SE(3) and SO(3) groups are omnipresent while
spherical data appear in omnidirectional images [26], nor-
malized features [20], pre-shape spaces [21] and surface
normals [37]. Articulated poses are represented by rota-
tions or length constraints [18, 27]. A square root of a
probability density function is a point on the unit sphere
[35]. Anatomical variability is captured via certain Lie
groups [15]. Diffusion-tensor images yield orientation dis-
tribution functions (e.g. [8]) or SPD matrices (e.g., [1]). The
latter are also used as image descriptors [40]. Flow patterns
are described by matrix Lie groups [23, 42] while infinite-
dimensional diffeomorphisms are used for nonrigid image
deformations (e.g. [2]). Kendall’s shape spaces are also
manifolds [21]. The Grassmannian captures affine shapes
[3, 34, 39]. Mesh deformations enable a tractable gener-

ative framework for deformable triangular surfaces [12].
See [36, 44] for additional shape spaces.

Statistics on manifolds is often done via parametric
models on tangent spaces, e.g. [11,12,17,28,33,37,39,41],
but alternatives (not considered here) exist, e.g. [4, 10, 19,
38]. Statistics on manifolds (our work included) is differ-
ent from manifold learning, where a low-dimensional latent
manifold is learned from data in Rn. In contrast, here M is
known and the goal is to model statistics of M -valued data.

We do not advocate a specific manifold or a specific Rie-
mannian metric and we do not seek to define a new tangent-
space model. Rather, we strive for an efficient TL frame-
work that applies to many manifolds and many models. We
base our method on PT but emphasize we are not the first
to use PT in statistical computer-vision tasks: PT has been
used in other, non-TL, applications; e.g. [24,25,30,39]. Our
approach differs from such work in, not only the applica-
tion, but also how PT is used: We PT models, not data.

Transfer Learning: Using Rn-valued data from one
dataset in an inferential task on another is a classical TL
problem (e.g. [5]). A model learned from one set can be a
prior for a model learned from the second [22]. Models can
also be learned independently and then be combined [32].
One may also use two mixture models, one per set, which
share a component [6]. There are many other examples of
TL; a full review is beyond our scope. Surprisingly, despite
the success of TL in Rn, the ubiquity of manifold-valued
data, and the effectiveness of statistics on manifolds, Rn-TL
solutions have yet to be generalized to manifolds. Note that
our M -valued data setting should not be confused with that
of [14], where, for Rn-valued data, they exploit the geome-
try of a space of models. Also, in manifold alignment [16],
TL is done via estimating a latent low-dimensional mani-
fold shared by two Rn-valued datasets, while in our setting
the data lie on a known manifold, and our goal is TL across
it. Wei et al. [42] share information across a Lie group using
PT. Particularly, they PT bases that span linear subspaces of
the Lie algebra. Unfortunately, their choice of PT does not
preserve inner-products so second-order statistics are dis-
torted. Thus, they cannot transport covariances, and their
transported PCA models are distorted. Our approach does
not have this problem, is applicable to more models (e.g.,
regression and classification) and does not require M to be
a Lie group. Hauberg et al. [17] transport covariances in
a tracking application. Our method differs in the applica-
tion, applies to a broader class of models, and also sheds
new light on their procedure, by showing it can be justified
in a concrete statistical sense. Closely related to ours, is a
very recent work by Xie et al. [43] who use PT for PCA
models in a shape space (whose elements are shapes, not
shape transformations). Their work is not focused on MT
in general, and while they apply PT to PCA eigenvectors,



they do not justify why this is optimal. Our work does not
only fill this theoretical gap but also treats PT of regres-
sions/classifiers which are not covered in [43].

3. Mathematical Background
Assuming familiarity with basic Riemannian geome-

try (see [7] for an introduction), we sketch the additional
background required for our method. Henceforth, M is a
geodesically-complete Riemannian manifold of dimension
n, and d : M ×M → R+ is a geodesic distance on M . If
p ∈ M , we let Expp and Logp denote its associated Rie-
mannian exponential and logarithmic maps.

3.1. Statistics on Manifolds

We review relevant notions in statistics on manifolds [11,
28]. Various concepts from classical statistics in Rn can
be generalized to M . A popular approach utilizes tan-
gent spaces. Let {pi}Ni=1 ⊂ M . The Fréchet function,
Q : M → R+: p 7→

∑N
i=1 d(p, pi)

2, generalizes the Rn-
notion of sum-of-squared-distances. A local minimizer of
Q (called the Karcher mean) can usually be efficiently com-
puted [28]. Let µ denote the Karcher mean. A covariance
is defined via the covariance of the data as expressed in
TµM : Cov({pi}Ni=1) , 1

N−1

∑N
i=1 Logµ(pi)Logµ(pi)

T .
As TµM ∼= Rn, PCA can be done on {Logµ(pi)}Ni=1 [11].
If the pi’s are labeled, and {Logµ(pi)}Ni=1 are seen as the
independent variable, then we can define a simple linear re-
gression (for R-valued labels) or a logistic regression (for
binary labels)1. Our treatment of both cases is similar and
we may assume, without loss of generality, that the labels
are real. Such problems should not be confused with those
where labels are M -valued, but the independent variable is
real (e.g. [10]).

3.2. Parallel Transport

In Rn, data and models can be moved from one region
to another via ordinary translation. On M , this fails; e.g. if
x ∈ TpM then x+q−p is rarely in TqM . Similarly, models
cannot be naively translated; e.g. a covariance, which can
be viewed as a bilinear form over one tangent space, cannot
be simply translated to another (Fig. 1c). The same applies
for linear regression (a linear functional over a particular
tangent space) and other models. However, vectors can be
moved from TpM to TqM using a well-known tool called
parallel transport (PT), to be defined as follows2. Suppose
every smooth curve c : [0, 1]→M is associated with a col-
lection of maps,

{
Γcs,t : Tc(s)M → Tc(t)M |s, t ∈ [0, 1]

}
,

such that: (1) Γcs,s is the identity map on Tc(s)M ; (2)
Γcu,t ◦ Γcs,u = Γcs,t; (3) Γcs,t depends smoothly on s and
t. In which case, if x ∈ Tc(s)M , we call Γcs,t(x) the PT

1Additional models, e.g. SVM [39], can be defined similarly.
2Another way to define it is via a connection [7].

of x along c to Tc(t)M . PT provides a principled way
to move data (when expressed as tangent vectors) across
M [24, 25, 39]. In what follows, c, s, and t are either clear
from the context or their particular values are immaterial to
the discussion, and thus we use Γ as short for Γcs,t; when it
is also clear which Γ is used, we write x̃ instead of Γ(x).

Criteria (1-3) are met by various collections of maps and
so there exist many types of PT. A metric parallel trans-
port (MPT) is one that preserves inner-products: 〈x, y〉p =
〈x̃, ỹ〉q for every x, y ∈ TpM . Thus, orthogonality and dis-
tance between vectors are preserved. This criterion too can
be met in various ways and so there exist various types of
MPT. Note that an MPT preserves second-order statistics:
when applied to TpM -valued random variables, their vari-
ances and correlations are unchanged. Also, every MPT is
an invertible linear map; cf . [13]. Finally, given the MPT of
choice, there still remains the technical issue of how to com-
pute it. The solution may be analytical or only numerical,
depending on the case. See also discussion in [24, 25].

4. Parallel Transport for Transfer Learning
4.1. The Euclidean Setting

Before the manifold setting, we start with a simpler Eu-
clidean one. Consider the following typical TL tasks.

Task I: The training set consists of two Rn-valued
datasets: {xL

i }
NL
i=1; {xS

j }
NS
j=1; NL > NS. Let p(xL) and

p(xS) be the unknown generating distributions. Our inter-
est is in modeling {xS

j } using either a normal distribution or
PCA. Suppose NS is sufficiently large to estimate the mean
of p(xS), but that it is too small to yield a reliable estimate
of a covariance or a PCA subspace.

Task II: The training set consists of two Rn-valued
datasets, {xAi }

NA
i=1 and {xBj }

NB
j=1, the xi’s being labeled;NB

need not be smaller than NA. With yAi = label(xAi ), the
yAi ’s are either binary (more generally, categorical) or real3.
The task is either classification or regression; i.e., to predict
{yBj }

NB
1 , the labels of xBj . We let p(yA|xA) and p(yB |xB)

denote the unknown conditional distributions. A possible
approach is to employ a logistic or linear regression; as the
mathematical treatment is similar we focus on the latter.

Solutions: In both tasks, we wish to leverage statistics
of one dataset when solving an inferential task for another.
If p(xL) and p(xS) (respectively, p(yA|xA) and p(yB |xB))
are unrelated, then this would fail. Suppose, however, that
there does exist an unknown relation; e.g., p(xL) and p(xS)
may be well-modeled by two Gaussians of different means,
but with similar covariances. Likewise, the optimal linear-
regression models implied by p(yA|xA) and p(yB |xB) may
differ mostly in their intercepts while the associated hyper-
planes are similar4. Thus, in Task I, following an appropri-

3A close variant is if we have some yBj ’s, but their number is smaller.
4 In both cases, by “similar” we do not necessarily mean “identical”.



ate offset implied by the means, we may fuse the associated
Gaussian or PCA models. In Task II, we may learn a model
from the (xAi , y

A
i ) pairs, and then shift the associated hy-

perplane to the region of Rn where the xBj ’s reside (we may
also follow this by some adaptation).

4.2. The Manifold Setting

This work considers analogous tasks but in the more
general and challenging manifold setting. Specifically, we
express each M -valued dataset in the tangent space at its
Karcher mean. In Task I, given two M -valued datasets,
{pi}NL

i=1 and {qj}NS
j=1, letting p and q denote the respective

means, set xL
i = Logp(pi) and xS

j = Logq(qj). In Task
II, given {pi}NA

i=1 and {qj}NB
j=1 in M , set xAi = Logp(pi)

and xBj = Logq(qj), reusing the symbols p and q to denote
the means (the labels are still either binary or real). The
goals are as before, but now the space of interest is TqM ,
while the statistics we hope to leverage are in TpM . Thus
we cannot immediately use the latter in the the former.

4.3. Solutions Can Be Based on Parallel Transport
– But What Objects Should We Transport?

Any type of PT can be used to move data from TpM to
TqM but for TL we restrict the choice to the MPT class in
order to preserve second-order statistics. More generally,
there are many ways, including non-parallel, to move data
from TpM to TqM , but all create some distortion due to
the curvature of M . Without prior knowledge it is sensible
to pick the approach which distorts the data the least. This
is provided by a particular choice of MPT, called the Levi-
Civita (LC) PT [7] which is widely used in computer vi-
sion. When prior information is available it may, however,
be better to pick another MPT that utilizes it (see [24, 30]
for examples in image registration tasks). Our framework
holds for all choices of MPT. Fix an MPT Γ, and let C de-
note the computational cost associated with transporting a
single vector. C increases with dim(M) = n and also de-
pends on M and Γ (particularly, it is higher when Γ is not
given in closed form). The solutions below differ in their
costs as they apply Γ to different numbers of vectors.

Solution 1 – data transport. The most direct solution
is to transport the data from TpM to TqM using an MPT.
This places the data from TpM in TqM while preserving
second-order statistics of the data. Unfortunately, the com-
putational cost can be high. If N is the size of the dataset,
the cost is NC; e.g., a large NL makes Γ({xL

i }
NL
1 ) expen-

sive. Likewise, using Γ−1({xS
j }
NS
1 ), intending to learn a

fused model in TpM , will not help if a large test set in TqM
has to be transported to TpM in order to apply the model.

Solution 2 – basis transport. If the number of data
points N is larger than the manifold dimensionality n we
can lower the computational cost by transporting the basis
of TpM . This is done by transporting the natural basis, i.e.

the columns of the n × n identity matrix. If L denotes the
matrix of the transported basis vectors, then the MPT can be
computed by a multiplication by L (i.e. a change of basis).
This has cost nC as we must transport n basis vectors (plus
the cost of the multiplication by an n×N matrix).

4.3.1 A Third Solution – Model Transport

In practice, both solutions are typically computationally ex-
pensive. Fortunately, often there is no need to transport ei-
ther the data or the basis: it suffices to transport the model.
In which case, the number of transported vectors is deter-
mined by the model complexity, and is fixed w.r.t. n and N .
Below we show how this is done. For Tasks I and II, Propo-
sitions 4.1 and 4.2 imply that after being learned in TpM , a
model can be then transported to TqM and we will get ex-
actly the same results as with the expensive solutions above.
We provide the proofs in the supplemental material [13].

Proposition 4.1 (Covariance/PCA Transport). Let n′ ≥ n
and assume M is embedded in Rn′

with a Riemannian met-
ric induced by Rn′

. Let p, q ∈ M and let {xi}Ni=1 ⊂
TpM . Let V S2V T be the eigen-decomposition of XXT

where X , [x1, . . . , xN ] and let V SUT be the SVD of X ,
with {Si,i}ni=1, the diagonal entries of S, sorted in a non-
increasing order. Let [v1, . . . , vn] denote the columns of V .
If x ∈ TpM , let x̃ ∈ TqM denote the transport of x accord-
ing to some MPT along a smooth curve in M from p to q.
Let X̃ , [x̃1, . . . , x̃N ] and let Ṽ , [ṽ1, . . . , ṽn]. Then:

(a) Ṽ SUT is the SVD of X̃ . while Ṽ S2Ṽ T is the eigen-
decomposition of X̃X̃T .

(b) If k < n, then the k-dimensional PCA model of
{x̃i}Ni=1 ⊂ TqM is given by (the eigenvectors) {ṽi}ki=1

and (eigenvalues) {Si,i/
√
N − 1}ki=1.

In words: (a) means that X and X̃ share singular val-
ues and right-singular vectors, but the left-singular vec-
tors of X̃ are exactly the parallel-transported left-singular
vectors of X . The model in (b) is equivalent to first
computing a k-dimensional PCA model (in TpM ) of
{xi}Ni=1, given by the vectors {vi}ki=1 and standard devia-
tions {Si,i/

√
N − 1}ki=1, and then transporting the {vi}ki=1

while keeping the standard deviations unchanged.
Proposition 4.1 substantially extends a previous re-

sult [17], derived in the context of the Kalman filter, which
states that the parallel transport of a TpM -covariance yields
some valid TqM -covariance. Thus, Proposition 4.1 not only
provides the basis for a compact TL framework for trans-
porting covariances and PCA models on manifolds, but
also sheds a new light on an existing tracking algorithm;
note it also provides further mathematical justification to
the method used in [43].



Our next proposition provides a similar result for simple
linear regression. But first, we need some preliminaries.
Let p and q be in an n-dimensional geodesically-complete
Riemannian manifold M . Let the inner-products on TpM
and TqM (implied by the Riemannian metric) be defined by

〈·, ·〉p : TpM × TpM → R : (x, y) 7→ xTApy (1)

〈·, ·〉q : TqM × TqM → R : (x, y) 7→ xTAqy (2)

where Ap and Aq are SPD. Let {xi}Ni=1 ⊂ TpM , let
{yi}Ni=1 ⊂ R denote their labels, and let L : TpM 7→ TqM
denote the linear transformation associated with some MPT
along a smooth curve in M from p to q. A simple lin-
ear regression model TpM → R has the following form:
x 7→ xTα + α0 = 〈x,A−1

p α〉p + α0. Here α0 ∈ R,
while α and A−1

p α are regarded5 as elements of TpM . Let
li : R → R+ be a loss function associated with yi (e.g.,
li : ŷi 7→ (ŷi − yi)2 is a square loss).

Proposition 4.2 (Simple-Linear-Regression Transport). Let

(β, β0) = arg min
α∈TpM,α0∈R

N∑
i=1

li(x
T
i α+ α0) , (3)

and set γ = AqLA
−1
p β (note that γ ∈ TqM ). Then

γ = arg min
δ∈TqM

N∑
i=1

li((Lxi)
T δ + β0) . (4)

An equivalent version of Proposition 4.2 holds for a
logistic-regression model (transported using the same ex-
pression we used here for γ); we omit the details. Unlike
in Proposition 4.1, in Proposition 4.2 we do not require the
presence of an ambient space Rn′

nor do we impose a par-
ticular metric. In fact, it is easy to prove a slightly differ-
ent version of Proposition 4.1 where these restrictions are
removed. However, showing this requires more notational
clutter which might obscure the main idea.

Note that for transporting PCA, the cost is kC (k vec-
tors are transported); for linear/logistic regression, it is C (1
vector). By now it should be apparent that similar results
can be derived for many other models. The desired commu-
tativity of learning and transport holds for any model where
the data enter the equations only via inner products; e.g., in
an SVM model one may transport the support vectors.

4.4. Applying Transported Models

Henceforth we will assume Γ : TpM → TqM is done
along a geodesic curve. Let ΣL = cov({pi}NL

i ) and set,
by abuse of notation, ΣΓ = Γ(ΣL). We can use ΣΓ as a

5Formally, α and A−1
p α are elements of the dual space of TpM .

(a) (b) (c)

Figure 2: Mean shapes. These correspond to the Karcher
means computed from 1000 female shapes (a), 50 male
shapes (b), and 50 shapes of women with high-BMI (c).

covariance on TqM or, letting ΣS = cov({qj}NS
j ), we may

combine them; e.g. using shrinkage estimation [32]:

Σλ , λΣΓ + (1− λ)ΣS , 0 ≤ λ ≤ 1 . (5)

For PCA, let VL ⊂ TpM and VS ⊂ TqM denote the
first kL eigenvectors of ΣL (where kL ≤ NL) and first kS

eigenvectors of ΣS respectively (we take kS = NS), and
set VΓ = Γ(VL) ⊂ TqM . Similarly, let σ2

L ∈ RkL and
σ2

S ∈ RkS denote the eigenvalues. We can now use (VΓ, σL)
as a PCA model in TqM , or combine it with VS; e.g., let
VF ⊂ TqM denote an orthonormalized version of [VΓ, VS].
VF, which we regard as a fused model, contains kL + kS

vectors and is able to generalize better than VS as it also
contains the transported variation from TpM . To enable a
direct comparison with VL or VΓ, we can also restrict the
combined model to have the same dimensionality by using
only kL vectors. Let X = [Logq(q1), ..,Logq(qNS)], define

Xλ , [λVΓσL, (1− λ)X] , 0 ≤ λ ≤ 1 , (6)

and let Vλ represent the kL-dimensional PCA subspace of
Xλ. This is simply weighted PCA, where we treat vectors
in VΓ as examples weighted by the standard deviations. In
both Eqs. (5) and (6), the larger λ is, the stronger is the
influence of {pi}NL

i . We think of this influence as regular-
ization. The value of λ may be chosen by cross-validation.

Transported regression models or classifiers can be uti-
lized in a similar way. More generally, a transported model
can either be applied as is in TqM , or it can be adapted (or
fused with a TqM -model) using Rn-TL methods.

5. Results
MT is applicable on many manifolds; here we experi-

ment with two of these, using only real, non-synthetic data.

5.1. PCA Transport and Shape Deformations

For Task I, let M be the manifold of triangular-mesh de-
formations, proposed in [12]. Points on M are deforma-
tions of 3D shapes from a template mesh. M is a Lie group
(though it is not a requirement for MT) made out of 21550



Figure 3: Summary for shape experiments. Left: Gender.
Right: BMI. The bars represent the overall reconstruction
error for VL, VS, VΓ, and VF. For a given model, the height
of the bar represents the reconstruction error measured in
terms of SGE averaged over the entire test dataset as well
as all of the mesh triangles.

(a) VL (b) VS (c) VΓ (d) VF (e) Vλ
Figure 4: Model mean error: Genders. Blue and red in-
dicate small and large errors respectively. The heat maps
are overlaid over the points of tangency associated with the
models: p for (a), and q for (b-e). See text for details.

copies of a 6-dimensional Lie group, which is isomorphic
to the product of three smaller ones, including SO(3); thus,
n = 129300. While here we do not advocate a particular
manifold nor does our work focus on shape spaces, this M
enables us to easily demonstrate the MT framework. The
data consist of aligned6 3D scans of real people [31]. On
this M , the LC PT is computed as follows: For the SO(3)
components of M , a closed-form solution is available [9],
while for the rest we use Schild’s ladder (see, e.g., [17,24]).

From Venus to Mars. We first illustrate the surpris-
ing power of MT. The training data contains NL = 1000
shapes of women (Fig. 1a, red; shown here on a 2D man-
ifold for illustration) but only NS = 50 shapes of men
(blue), where all shapes are represented as points on M .
As it is reasonable to expect some aspect of shape variation
among women may apply to men as well, we model the
shape variation of men while leveraging that of women. We
first compute the Karcher means for women and men de-
noted p and q, respectively (Fig. 2a–2b). We then compute
their PCA models, VL ⊂ TpM and VS ⊂ TqM (kL = 200
and kS = 50), as well as VΓ = Γ(VL). For an animated
illustration see [13]. We also compute VF and Vλ using
the procedures from Sec. 4.4. We evaluate performance on

6MT also applies to some shape spaces that do not require alignment.

Ground
Truth

VL

(Women)

VS

(Men)

VΓ

(PT)

VF

(Fuse)

Figure 5: Selected results: Gender. Each column represents
a different test body. The heat maps are overlaid on the
reconstructions using different models.

(a) VL (b) VS (c) VΓ (d) VF (e) Vλ
Figure 6: Model mean error: BMI. Analogous to Fig. 4.

1000 test male shapes, whose deformations serve as ground-
truth. Let V ∈ {VL, VS, VΓ, VF, Vλ}. Let µ denote the point
of tangency; i.e., p for VS and q otherwise. Let zi ∈ M
denote the true deformation of test example i. Its recon-
struction is Expµ(V V TLogµ(zi)) ∈ M . We then com-



pute, for each triangle, the Squared Geodesic Error (SGE)
between the reconstruction and the true deformation. Fix-
ing i, SGE is averaged over all body triangles, yielding the
Mean SGE (MSGE) of the ith body. Overall performance
of V is defined by averaging MSGE over all test examples.
MSGE results are summarized in Fig. 3 (left). To visualize,
we average the SGE, per triangle, over all test examples,
and display these per-triangle errors over the mesh associ-
ated with µ (Fig. 4). Figure 4a shows that VL performs very
poorly; a shape model of women fails to model men. While
the errors for VS are much lower (Fig. 4b), there are still
noticeable errors due to poor generalization. The surprise
is Fig. 4c, which shows the result for VΓ: the PT dramat-
ically improves the female model (Fig. 4a) to the point it
fares comparably with the male model (Fig. 4b), although
the only information used from the male data is the mean.
Combining transported and local models lets us do even bet-
ter. Figure 4d shows that VF significantly improves over VS

or VΓ. Figure 4e shows the regularized model, Vλ, which
has the same dimensionality as VL and still performs well.
Figure 5 shows selected results for test bodies; see [13] for
additional results and reconstructions.

From Normal-Weight to Obesity. A good statistical
shape model of obese women is important for fashion and
health applications but is difficult to build since the data are
scarce as reflected by their paucity in existing body shape
datasets [31]. This experiment is similar to the previous
one, but both the data and the results are of different na-
ture. Here, we have 1000 shapes of women with BMI ≤ 30
but only 50 shapes of women with BMI > 30. We com-
pute means and subspaces as before. Figure 2c shows q, the
high-BMI mean; p, the normal-BMI mean, is not shown as
it is very similar to p from the gender experiment. Figures
3 (right) and 6 summarize the results. Compared with the
gender experiment there are two main differences: 1) Here
VΓ is already much better than VS so fusion only makes a
small difference. 2) Error bars (Fig. 3, right) are larger than
before (Fig. 3, left) due to the limited amount of test data
available for high-BMI women; this is truly a small-sample
class: we were able to obtain only 50 test examples. Com-
pared with using VS, reconstruction is noticeably improved
using our method (VF). In both experiments, results for Vλ
look nearly identical to VF, and are not shown. See [13] for
individual reconstruction results.

5.2. Classification Transport and Image Descriptors

For Task II, our data consist of facial images7 and the
goal is binary facial-expression classification. Images are
described by SPD matrices that encode normalized corre-
lations of pixel-wise features [40]. Each quarter of an im-
age is described by a 5 × 5 SPD matrix, yielding an im-
age descriptor in M = SPD(5)4. PT is computable by

7From www.wisdom.weizmann.ac.il/˜vision/FaceBase

Figure 7: Classifier-transport example. Select images. Top:
First data set. Bottom: Second data set. In each row, exam-
ples from class 1 (left) and class 2 (right) are shown.

Schild’s ladder, M is not a Lie group8 and n = 60. The
datasets {pi}NA

i and {qj}NB
j reflect two different viewing

directions; NA = NB = 168. The labels of {pi}NA
i are

known, those of {qj}NB
j withheld. See Fig. 7 for examples.

We compute p and q, the means of the datasets. Then, us-
ing {Logp(pi)}

NA
i ⊂ TpM , we learn a logistic-regression

model. This classifier, defined on TpM , is correct 59% of
the time when applied to {Logp(qj)}

NB
j ⊂ TpM . Apply-

ing the transported model to {Logq(qj)}
NB
j ⊂ TqM im-

proves performance to 67%. Thus, for the same unanno-
tated {qj}NB

j , MT improves over the baseline. Note we had
to PT only one vector; even for such a small dataset the
speed gain is already significant.

6. Conclusion
Our work is the first to suggest a framework for gener-

alizing transfer learning (TL) to manifold-valued data. As
is well-known, parallel transport (PT) provides a principled
way to move data across a manifold. We follow this rea-
soning in our TL tasks, but rather than transporting data we
transport models – so the cost does not depend on the size of
the data – and show that for many models the approaches are
equivalent. Thus, our framework naturally scales to large
datasets. Our experiments show that not only is this math-
ematically sound and computationally inexpensive but also
that in practice it can be useful for modeling real data.
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tics on diffeomorphisms via tangent space representations.
NeuroImage, 23:S161–S169, 2004. 2

[42] D. Wei, D. Lin, and J. Fisher III. Learning deformations with
parallel transport. ECCV, 287–300, 2012. 2

[43] Q. Xie, S. Kurtek, H. Le, and A. Srivastava. Parallel transport
of deformations in shape space of elastic surfaces. ICCV,
2013. 2, 3, 4

[44] L. Younes. Spaces and manifolds of shapes in computer vi-
sion: An overview. IVC, 30(6):389–397, 2012. 2


