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Geodesic interpolation
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Introduction
Statistical deformable shape models have wide application in computer
vision, graphics and biometrics

Deformation of triangles are the basic units

Goal:
Effective statistical modeling of shape variability

Problems:
Y = QX. X,Y ∈ R3×2,Q ∈ R3×3. 6 constraints, 9 DoF. Q =?
Issues with existing models: redundant DoF; assume Euclidean geometry
while Q matrices do not form a linear space; synthesis is prone to
inconsistency (e.g., detQ < 0 or detQ = 0)

Solution
A shape is a point on a non-linear manifold,
M , GNT

T . GT is novel 6D Lie group

Advantages
Consistency
No redundant DoF⇒ less noise
(In CAESAR, the Euclidean variance in our
method was 1.68 smaller)
A principled definition of distance
Closed-form formulas: exp, log and geodesics

Lie Groups and Lie Algebras
Key concept: The tangent space
Transitions: exp & log

A geodesic distance and a geodesic path:
d(p, q) =

∥∥log(p−1q)∥∥
F

c(t) = p exp(t log(p−1q))

1Robinette, et al. : Civilian American and European Surface Anthropometry Resource (CAESAR) final report.
AFRL-HE-WP-TR-2002-0169, US AFRL (2002)

Canonical Triangles

v1 has the same the direction as the positive x-axis
v2 lies in the the upper half of the xy-plane

If a triangle X is not canonical, we can always find a
rotation matrix, RX, such that RXX is canonical

GT : A Lie Group Of Triangle Deformations

GT ,
Rotations
SO(3) ×

NEW
GA ×

Scaling
GS

Composition: ((R1, A1, S1), (R2, A2, S2)) 7→ (R1R2, A1A2, S1S3)
GA preserves canonization of triangles as well as well as the length of v1

RYY = ASRX ⇒ Y = RT
YASRXX R , RT

YRX

Y = RRT
XASRXX

Left-Invariant Metric

d(p1, p2) = d(p3p1, p3p2) ∀p1, p2, p3 ∈M
e.g.

d(I,Q1) = d(Q2I,Q2Q1)

d(I, rotation) = d(scale, scale & rotation)
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Statistics on Manifolds and Principal Geodesic Analysis

Data: {p1, p2, . . . , pn} ⊂M
Intrinsic Mean:
argminµ∈M

∑n
i=1 d(pi, µ)

2

gi , µ−1pi
⇒ log gi ∈ TIM ∼= TµM

Eigenvectors {ek}Kk=1 ⊂ TµM
Synthesis: µ exp(

∑K
k=1αkek)

Predicting Biometric Measurements

Linear regression from
subspace coefficients
to measurements

Mesh Reconstruction: Edges

Table: Mean edge RMS for mesh reconstruction using a subspace
#PC’s 5 10 15 20 25 30 35 40 45 50 100
Euclidean method. Ave. RMS [mm] 2.71 2.53 2.43 2.34 2.28 2.23 2.19 2.15 2.11 2.08 1.91
Our method. Ave. RMS [mm] 2.57 2.43 2.32 2.26 2.21 2.17 2.12 2.09 2.06 2.03 1.88

Mesh Reconstruction: Human Shape Perception

20 PCA/PGA coefficients
300 examples, each seen by 10 people
Our approach was preferred 56% of the time
Pr(M won|majority was achieved) = 0.69
(note that the PGA subspace is a maximizer of the captured variance and

need not be the minimizer of the reconstruction MSE)

Interpolation/Extrapolation works for poses as well:

For more extreme poses, use skeleton info. Red shapes: http://tosca.cs.technion.ac.il


