Lie Bodies: A Manifold Representation of 3D Human Shape
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Scans of real people (CAESAR! dataset)
Geodesic interpolation
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Canonical Triangles

v, has the same the direction as the positive x-axis iz

Statistics on Manifolds and Principal Geodesic Analysis

pexp(+4oe;) pexp(+4ces) pexp(+4ces) pexp(+4oey) pexp(+4oes)

Introduction
Statistical deformable shape models have wide application in computer
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vision, graphics and biometrics

Deformation of triangles are the basic units
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Goal:
Effective statistical modeling of shape variability
Problems:

BY =QX. X,Y € R**?%2,Q € R3*3, 6 constraints, 9 DoF. Q =7

m Issues with existing models: redundant DoF; assume Euclidean geometry
while Q matrices do not form a linear space; synthesis is prone to
Inconsistency (e.qg., det Q < 0 or det ) = 0)

Solution
A shape is a point on a non-linear manifold,
M £ G,". Gy is novel 6D Lie group

Advantages

m Consistency

m No redundant DoF = less noise
(In CAESAR, the Euclidean variance in our
method was 1.68 smaller)

m A principled definition of distance
m Closed-form formulas: exp, log and geodesics

Lie Groups and Lie Algebras

m Key concept: The tangent space

m [ransitions: exp & log

B A geodesic distance and a geodesic path:

d(p,q) = |log(p~"q)|
c(t) = pexp(t log(p_1Q))

'Robinette, et al. : Civilian American and European Surface Anthropometry Resource (CAESAR) final report.
AFRL-HE-WP-TR-2002-0169, US AFRL (2002)

c(t) = exp(tlog(p'q))

v, lies In the the upper half of the xy-plane 2

‘. Canonical
If a triangle X is not canonical, we can always find a le
rotation matrix, Rx, such that Rx X Is canonical z /

Gr: A Lie Group Of Triangle Deformations

N Rotations NEW Scaling
Gr =S0O(3) X G4 X Gg

COmpOSitiOn: ((Rl, Al, Sl), (Rz, Az, Sz)) —> (Rle, AlAz, 5153)
(& 4 preserves canonization of triangles as well as well as the length of v,

Deform in plane

A

Canonical

Rotat

SRx X ASRx X Y = RLCASRx X

Canonical Canonical

RyvY = ASRx = Y = R%ASRXX

R 2 RTRy

Y = RRYyASRxX

m Intrinsic Mean:

B g = plp;

d(plv Pz) — d(P3P1a ngz) Vp1,p2,p3 € M
e.g.

d(I,Q) = d(Q21,Q20Q)

d(I,rotation) = d(scale, scale & rotation)

arg min, ey > iy d(pis p)°

= logg; € TTM =T, M
m Eigenvectors {e}; , C T.M
B Synthesis: pexp(szzl Q€r)
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Mesh Reconstruction: Edges

Table: Mean edge RMS for mesh reconstruction using a subspace

#PC’s 5 10 15 (20 25 |30 |35 40 45 50 |100

Euclidean method. Ave. RMS [mm]  2.71 2.53 2.43|2.34 2.28 2.23|2.19 2.15/2.11|2.08 1.91
Our method. Ave. RMS [mm] 2.572.4312.32 2.26|2.212.17 2.12/2.09 2.062.03|1.88

Mesh Reconstruction: Human Shape Perception

m 20 PCA/PGA coefficients
m 300 examples, each seen by 10 people

m Our approach was preferred 56% of the time
Pr(M won|majority was achieved) = 0.69

(note that the PGA subspace is a maximizer of the captured variance and

need not be the minimizer of the reconstruction MSE)

Interpolation/Extrapolation works for poses as well:
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For more extreme poses, use skeleton info. Red shapes: http://tosca.cs.technion.ac.il




