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Abstract

The 3D shape of the human body is useful for applica-
tions in tness, games and apparel. Accurate body scan-
ners, however, are expensive, limiting the availability bf
body models. We present a method for human shape recon-
struction from noisy monocular image and range data using
a single inexpensive commodity sensor. The approach com-
bines low-resolution image silhouettes with coarse range
data to estimate a parametric model of the body. Accu-
rate 3D shape estimates are obtained by combining mul-
tiple monocular views of a person moving in front of the
sensor. To cope with varying body pose, we use a SCAPE
body model which factors 3D body shape and pose vari-
ations. This enables the estimation of a single consistent
shape while allowing pose to vary. Additionally, we de-
scribe a novel method to minimize the distance between
the projected 3D body contour and the image silhouette
that uses analytic derivatives of the objective functioe. W (b) (©)

propose a simple method to estimate standard body meafigure 1: Overview. (1a) Microsoft Kinect [1]. (1b) 3D
surements from the recovered SCAPE model and show thaboint cloud of a human in a cluttered home environment.

the accuracy of our method is Competitive with commercial (10) Recovered Shape transformed into a new pose.
body scanning systems costing orders of magnitude more.

. small number of synchronized camera images [5], or from
1. Introduction several unsynchronized cameras [17]. We restrict our at-
For many applications an accurate 3D model of the hu- tention to the monocular case, where the common approach
man body is needed. The standard approach involves scanis to segment the person from the background and to esti-
ning the body using a commercial system such as a lasemate the 3D shape of the body such that the silhouette of
range scanner or Specia|_purpose Structured_"ght Systemthe bOdy matches the image silhouette. The wide variation
Several such body scanners exist, costing anywhere fromin body shape, the articulated nature of the body, and self
$35,000 to $500,000. The size and cost of such scannergcclusions in a single view, however, all limit the useful-
limit the applications for 3D body models. Many computer ness of image silhouettes alone. To cope with these issues
vision solutions suffer the same problems and require cal-We combine image silhouettes with coarse monocular range
ibrated multi-camera capture systems. Here we describe #lata captured with a single Microsoft Kinect sensor [1].
solution that produces accurate body scans using consumer The resolution and accuracy of the sensor is relatively
hardware that can work in a person’'s living room (Fig. 1). poor and our key contribution is a method to accurately es-
This opens the door to a wide range of new applications. timate human body pose and shape from a set of monocu-
Recently there have been several approaches to capturintar low resolution images with aligned but noisy depth in-
3D body shape from a monocular image [15, 16, 19, 26], aformation. To be scanned, a person moves in front of a
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Figure 2:Overview. (2a) Four views of the body in different poses are capturehfa single Kinect. (2b) 3D point cloud
and segmented 3D point cloud with ground plane for four freufeme shown). (2c) Recovered pose and shape (4 frames).
(2d) Recovered shape in new pose.

single sensor to capture a sequence of monocular imagesion. To estimate body shape accurately, we must deal with
and depth maps that show the body from multiple anglesdata that is monocular, low resolution, and noisy.

(Fig. 2). As the person moves, their body shape changes anguelovet al [4] describe a partial solution. They
making rigid 3D alignment impossible. We solve for the gno that, given a high resolution range image from a sin-
pose in each frame and for a single common shape acrosgje view, the SCAPE model can be t to the observed data.
all frames. To do so, we use the SCAPE model [4] which The gpserved data constrains the full 3D shape, enabling
is a parametric 3D model that factors the complex non-rigid them to hallucinate unseen parts of the body (shape com-
deformations induced by both pose and shape variation andpletion). For our purposes, this is not suf cient since we
is learned from a database of several thousand laser scansgeek an accurate model of the full body shape. We must
We estimate model parameters in a generative frame-therefore combine multiple views of the person and several
work using an objective function that combines a silhou- |ow-resolution scans to obtain an accurate representation
ette overlap term, the diff_erence between the observecdar_ang If the person remained rigid, or we used multiple sen-
data angl the depth pred_|ct_ed _by our model, and an OIOtlonaIsors, then it would be straightforward to rigidly align mul-
pose prior that favors similarity of poses between frames.tiple views to recover a composite 3D body. In our case
The silhouette term uses a novel symmetric shape diSSim'people move relative to a single sensor and, even if the;/
ilarity_ function that we IocaIIy_ minimize using a standar_d try to maintain the same pose, there will be no'n-rigid varia-
quasi-Newton method. Our silhouette formulation has sig- tions in their shape. To cope with this we need to integrate

ni cant advantages over previous methods (such as ICF))the consistent 3D body shape information across views and
_and enabl_es accurate optimization of body shape and pos%oses. To do so we use the SCAPE model [4] which factors
ina very high-dimensional space. body shape and pose information.

In summary our contributions are: 1) A system for at Lo
home body scanning; 2) The combination of multiple low- Balan and Blac!< [6] use a similar idea to solve for .body
resolution, noisy, monocular views (range and/or silhou- s_hape under _clothlng. _They capture dressed people in mul-
ettes) to estimate a consistent 3D body shape with vary-tIIOIe POSES W'th a multi-camera system and a green-screen
background. Like us, they assume that body shape is con-

ing pose; 3) A new method for matching 3D models to sil- = L L .
houettes using an objective function that is corresponelenc sistent across pose variations and combine information fro

free, bidirectional, and can be optimized with standard multiple poses to estimate body shape. Quryvork s different
methods requiring derivatives of the objective functioh; 4 in that we use m_onocular data. Every time instant captures
A simple method to predict 3D body measurements from the person in a different pose, so we never see the same pose

SCAPE model parameters using linear regression; 5) Afrom multiple views. _
quantitative comparison with a commercial state-of-tte-a ~ There have been several recent methods that estimate

solution for scanning and measuring the bodly. body shape from monocular images. For example, image
contours have been used in several graphics applications
2. Related Work [19, 26] where the metric accuracy of the body shape is

not important. The recovered shapes are used for animation
The Microsoft Kinect provides one of the rst inexpen- purposes to change the shape of people in images or videos.
sive and widely available range sensors. Existing commer-To achieve metrically accurate results, more informatgon i
cial and research systems solve the problem of rough bodyrequired. Guaset al. [15] show that silhouettes alone are not
pose estimation from this type of sensor data [12, 23] but, to suf cient for this task and introduce two innovations. FEirs
date, there are no methods for accurate body shape estimahey provide a height- and weight-constrained subspace of



body shape variation to constrain the problem. Second, andnaps can be visualized either as a range image or as a point
more importantly, they integrate a shape from shading cuecloud, see Fig. 2.
into the body shape optimization (similar to [9]). The shad-  Ground plane. We obtain an estimate of the ground
ing cue gives information about the shape inside the bodyplane by robustly tting a plane to the bottom of the point
contour and they show that adding this improves the recov-cloud, using the Kinect's on board accelerometer to initial
ered shape accuracy. ize such that we locate the oor and not one of the walls.

Shading is a relatively weak cue and if range data is = Segmentation.We segment the body from the surround-
available, it can provide more information about shape. In ing environment using background subtraction on the depth
early work on body shape estimation, Planckers and Fuamap. Given a depth mapyq taken without the subject
[22] use depth information from a stereo camera to estimatepresent and a depth m@ associated with a franfe, we
rough body shape in a frontal view. Grestal. [14] t pa- take the foreground to be,; Df > , where is afew
rameters of a simpli ed body model to silhouettes and then mm. We then apply a morphological opening operation to
use these parameters to improve pose tracking from rangeemove small isolated false positives.
data.

4. Body model and tting

3. Sensor and preprocessing In order to estimate a body shape that is invariant to

The Microsoft Kinect sensor that we use consists of an Pose, we need a model that accurately represents non-rigid
IR camera, an RGB camera, and an IR projector that castsshape deformations while factoring deformations caused by
a xed speckle pattern. Conversion of the pattern, as seenchanges in intrinsic shape (height, weight, body type) etc.
by the IR camera, to a depth map happens on the devicefrom deformations caused by changes in pose. We use a
It has a USB interface and images can be captured usingSCAPE [4] model with 15 body parts connected in a kine-
a library developed by the OpenKinect project [2]. This matic tree with 3 degrees of freedom between each part.
library provides access to both the depth map and the rawNon-rigid deformations due to pose variation are modeled
IR video, as well as to the RGB video and data from a built uUsing linear predictors learned from examples. Body shape
in accelerometer. The video streams are VGA resolution deformation is modeled using principal component analy-
and both the RGB and IR (either raw or the depth map) cansis (PCA) on an aligned database of several thousand bod-
be captured synchronized at 30 fps. ies. We use the method described in [15] to constrain body

Intrinsic calibration. Intrinsic calibration of the RGB ~ shape to a subspace that is roughly orthogonal to height
camera is carried out with a checkerboard and standard calvariation, allowing us to freely optimize within the subspa
ibration techniques [7]. To calibrate the IR camera we cover of bodies with the subject's reported height. Our model
the projector so that the calibration grid is not corruptgd b has 48 pose parameters per frame and 60 shape parameters
the projected pattern; otherwise calibration is identical ~ (i.€. 252 parameters for 4 frames).
that of the RGB camera. We correct for a known offset be- 4.1. Pose initialization
tween the raw IR image and the depth map; see [21].

Stereo calibration. Stereo calibration between the depth ~ We assume a gross initial pose estimate; a complete, end
and RGB cameras can be achieved with standard stereo calo end system would be obtained by combining the method
ibration methods [7]. We use this only for visualization to We describe here with an existing coarse pose tracking al-
map the color image onto the point cloud. gorithm [12, 23]. The subject provides their height and the

Depth calibration. The Kinect reports depth discretized initial body shape is taken to be the average shape for the
into 2047 levels, with a nal value reserved to mark pixels Subject's height and gender [15]. We initialize the body
for which no depth can be calculated. These discrete lev-model in the scene using the ground plane and the centroid
els are not uniformly distributed, but are much denser closeOf the point cloud. Examples of initializations for two tsa
to the device. We calibrate the depth by lining up a pla- can be seenin Fig. 4.
nar target parallel to th_e Kinect su_ch that the depth valuesf4.2. Depth objective
are as uniform as possible across its surface; the distance i
then measured and the process repeated with depths ranging For a body model represented as a triangulated 3D mesh
from 0.5m to 3m in 0.1m increments. A curve of the form: with pose and shape parameterswe associate a trian-
d(x) = ﬁ is tto this data, yielding the distancg(x) in gle ty( ) with every pixelx in the overlap between the
meters given the discrete depth lexelThe resulting depth  model silhouetteS( ) and observed silhouette by nd-

PR - o ) - ing the front most triangle that projects into LetU( ) =
As of this writing, software tools for working with the Kineare . R ; ;
evolving rapidly. In addition to the OpenKinect librarieewse, options f(xl' txl( ))' -9 for all x in S( ) \ T. Foreach plxel we

now include OpenNI and Microsoft's Kinect SDK, both of whiphovide have the observed deplhy, and for the corresponding tri-
additional functionality. anglet we nd the depthDy; ( ), along a ray through the




pixel center to the plane of the triangle. Takintp be a ro- Mddel Obselve:

bust error function (here, Geman-McClure [13]), our depth 250
objective is
1 X 200
Ed( ;U) = v Dx;t( ) Dy
J J (X;t )2U 150
4.3. Silhouette objective 100 0

Methods for tting 3D models to silhouettes usually ap-
proximate one of these two integrals

Z
min (jix  ¥i) 1)
x25 ¥2T Figure 3: Silhouette distance On the left, the silhouette
z of the body model is colored by squared distance to the
xz@syTi@r)]T (i ¥i): (2) grey observed silhouette. On the right, the implicit point

and line correspondence on an arc of the left leg's silheuett
HereS andT are silhouettes@ Sand @ Tare their bound- js shown by coloring the arc to match the colors of points
aries, and is a non-decreasing functiore. Geman-  and lines on the observed silhouette. The squared distance
McClure [13]). Frequently, approximations to (1) use a dis- function along this arc as a function of the y-coordinate is
crete distance map [5, 24] and approximations to (2) useoverlaid in grey to illustrate the effects of changes in cor-
a discrete distance map or a correspondence-based schemespondence. Colored dashed lines are used to indicate the

like ICP [10, 17] The integrand of the latter is illustrated boundary of the region where a Segment‘s point-"ne dis-
in Fig. 3. Integrals like these are often used to de ne shapetance applies.

distances [8], but are not widely used with parametric 3D
models under projection.

Accurately tting a body to the image evidence bene ts the average distance between corresponding points, which
from bi-directional shape distance functions [24] that eom is a smooth function of the vertices of both shapes. Under
pute the distance from the model to the image contour andprojection we lose this bound because points on the silhou-
vice versa. Minimizing the distance from the image to the ette boundary no longer have a stable relationship to the 3D
model ensures that all image measurements are explainedeometry. Without this, the use of ICP is problematic, es-
while minimizing the distance from the model to the im- pecially with complex articulated and non-rigid objects.
age ensures that visible body parts are entirely explaiged b If we have a set of correspondences between 3D model
image evidence. Modeling the distance from the model to vertices on the silhouette boundary and points on the ob-
the image is straightforward using the Euclidean distanceserved silhouette, as we minimize the average distance of
transform to approximate the distance function to the im- the projected vertices to their corresponding 2D points,
age silhouette, as this does not change during optimization some vertices will disappear from the silhouette boundary
Modeling the distance from image to the model is more dif- and new vertices will appear. Since these newly visible ver-
cult because the distance function to the model's silhéeiet  tices will not in uence the objective function until we re-
changes with the parameters being optimized; this makes arcompute correspondences, the optimizer may move them
explicit computation of the derivatives dif cult. anywhere without penalty. When this happens, the param-

Consequently, many methods that use distance maps eieters being optimized may jump away from low-error xed
ther use uni-directional distance, from model silhoustte t points to a solution from which ICP cannot recover.
static observed silhouette [20, 24] or use a derivative-fre ~ We address this problem with a well-behaved new for-
optimizer [5]. Problems with the uni-directional applica- mulation that uses implicit rather than explicit correspon
tion of (1) have been discussed and addressed [24]. Sim-dences. We compute the line integral in (2) directly,
ilar problems arise with the use of (2) but are not often replacing the explicit correspondences of ICP with the
mentioned. The use of derivative free methods for a high- continuously changing ones implied by thein func-
dimensional problem like ours is impractical, so we seek a tion. Symmetrizing this yields an objective function that
method admitting explicit computation of the derivative. is correspondence-free and bidirectional.

ICP methods are frequently used to minimize (2) for 2D~ To compute this integral, we must know, for each point
to 2D and 3D to 3D shape registration problems. They canon the integration silhouette, the distance to the nearest
be used bidirectionally and optimization is straightfordva  point on the other (reference) silhouette. Each segment of
because the average point-to-shape distance is bounded bihe integration silhouette is broken up into pieces that are



nearest to the same geometric primitive (vertex or line seg-whereS( ) is the silhouette of the model with parameters
ment interior) in the reference silhouette. These bre#dks, i andT is the image silhouette.

lustrated in Fig. 3, occur in two circumstances: 1) Along T

lines emanating from a segment's vertices and perpendic-4'4' Optimization

ular to the segment. These lines de ne the region where To estimate , we alternately compute pixel-triangle cor-
perpendicular distance to the segment is de ned (dashedrespondencess ( ;) for every framd and new model pa-
lines in Fig. 3). 2) On linear or quadratic arcs where two gameters j+; by local g]inimization ofEi( ;Us () =

points (quadratic), two segment interiors (linear), or gse ¢ EaC ;U () + ¢ Es(St( )i Te) + E posel ),
mentinterior and a point (quadratic) are equidistant (@sro  whereE pose( ) is a simple pose prior. For local minimiza-
of equal distancd in Fig. 3). tion, we use a SR1 trust region method with exact solution

The derivative of this integral is easily computed in terms of the trust region subproblem.
of the derivative of the path of integration and the derxati
of the integrand [11]. There is, however, a small problem. 5. Results
At the breaks the integrand is not differentiable with respe
to the reference silhouette, as the the distance functmns t - ! ) X
the two equidistant primitives vary independently. Nor is [OUr times: facing the camera, in pro le, facing away from
it differentiable with respect to the point of evaluatign the camera, and rotateth , halfway between frontal and

as variation in one direction is dictated by one primitive's P° le. _AS (Ije_molnstr%t_ed |n. F|g.f5, tr:je ﬁhmce of t:e f?ur
distance function and variation in another will be dictated POS€S IS € atlve_y ar |trary_, we found that more than four
by the other's. If these breaks occur only at points, as theyIOOSeS did not signi cantly improve the results and fewer

do for almost every pair of silhouettes, they do not matter. made them worse.

There are nitely many such breaks, and the value of the . .F|tt|ng results for two subjects are shown in Fig. 4. It_
integrand at nitely many points, so long as it is bounded, is important to remember that these images are not multi-

does not effect the value of an integral. But, if a segment on camera synchronous captures. Becagse these images are not
the integration silhouette lies along one of the arcs Wherecar;tured S|Lnultaneously, an(z)the subjec:js move fronl’)lframe
two primitives are equidistant, the non-differentialyilaf ]EO ramec,:t € pose lcannolt N assumeb constafnt etweedn
the integrand is inherited by the integral. Because this hap T2mes. Consequently we let pose vary between frames an
pens only when two constraints are met — the integration use a simple pose prior that penalizes frame-to-frame-varia

path and arc of equidistance must be parallel and touching —Eoln inlihe orihentation of each E?d_y part indl_ekper;]der;]t_ly;;l'hi
manifolds where our objective function is non-smooth have elps e_ept € pose reasonable In cases i et _et ird frame
dimension 2 less than the parameter space. There is noth(Pro le view) for the female subject, where the right leg is

ing about these constraints that would push the optimiaatio not _V'S'é)le :]ro;n the came;rr;\] a?d |s|thusb9thervr;/|se urr:con.-
trajectory toward these manifolds. In practice we optimize strained. The foot pose of the female subject shown here is

using a method intended for smooth functions and do not Problematic, with portions of th_e feetincorrectly s_egnmht
encounter problems. as background and a Iarge_reg|0_n of_ oor nearby mcorrec_tly
De la Gorceet al. [9] use a similar integration-based ap- segm.ented as foreground |nduc!ng incorrect ankle.rotatllon
proach in the context of articulated hand tracking with a Despite t_hat, the 1to the rema‘”d?r of the body is quite
generative model and formulate a differentiable objective gooq. W',th the.coarse range and silhouette data used here,
function. Their objective focuses on a generative model of &1 individual view may notbe very accurate, but the robust

image appearance across the interior of the object. Theycombingtion of body shape across views provides suf cient
compute a 2D integral, which allows them differentiabil- constraints to recover sr_lape well. . .

ity despite a 1D discontinuity along the occluding contour . Figure 5 showsgsubject scanned in several ywdely vary-
of the body. We could similarly compute a differentiable INg poses gpd t without the pose constancy prior to high-
version of the area integral in (1), but it would require us l'_ght th_e ability of the method to mtegrat(_e shape across mul
to computearg miny, 7 jj% ¥ inside a 2D region, which tiple disparate poses. The pose error in the second frame,
amounts, in our setting, to computing the Voronoi diagram where the lower legs are pulled tightly up to the upper legs,

for a set of line segments.

We scanned four subjects, having each stand in a T pose

is due to a segmentation error; the lower legs were incor-
Our silhouette objective function is a symmetrized and "€Ctly Ségmented as background, so there was no image ev-

scaled version of (2), averaging distance over each silhou-'dence_ to_ dnye the lower Iegs_to remain V'S.'ble'
ette boundary to the other: Optimization takes approximately 65 minutes per body.

This may seem excessive but recall that the optimization
_1 min_ (jx %) 3) involves estimating 252 parameters.
2]@A x2@av2@B From bodies to measurementsOne of the reasons to t
Euwni (S();T)+ Euni (T;S()) (4) a 3D body model is to extract standard measurements of the

Euni (A;B)

Es(S():T)



Figure 4:Results Rows 1-2 male subject. Rows 3-4 female subject. Grey mdsitiaization. Green mesh is tted result.
Righthand column is tted result reposed into novel pose.

body (arm length, chest circumference, etc.) that are use-t to Kinect data as described above (Fig. 6¢). This al-
ful in many applications. To calculate measurements from lows us to evaluate the accuracy of the tting method and
shape parameters, we use a method that follows Adlen sensor data independent of the smoothing effect introduced
al. [3] in spirit, but is the inverse of the problem they de- by the SCAPE model which represents body shapes in a
scribe. Allenet al. learn a linear function from a set of mea- low-dimensional linear subspace. The SCAPE t to the
surements to shape parameters, allowing them to synthesizéaser scan represents a “best case scenario” since the data
new people with speci ed measurements. We take the samds high resolution and highly accurate. The difference be-
data—shape parameters and hand measurements for the seween a model t to laser data and Kinect data is illustrated
eral thousand subjects of the CAESAR dataset—and perfornin Fig. 6d; the vertex to vertex distances are 0.53mm (mini-
linear regression to learn a function from shape parametersmum), 22.23mm (maximum), 10.17 (mean), 9.91 (median).
to measurements (with the exception of weight, where we  Linear measurement accuracy. The second source of
nd it more accurate to regress from the shape parametersground truth we use to evaluate accuracy is hand measure-
to the cube root of weight). ments, taken by a professional with both tailoring and an-
Accuracy relative to laser scansWe evaluate the met-  thropometric measurement experience. These we compare
ric accuracy of tting body shape using just image contours to measurements calculated from the optimized shape pa-
and using both image contours and depth. To do so werameters using the linear predictors described above.
captured reference scans of the subjects using a Vitus laser Figure 7 compares the measurement accuracy from
scanner (Human Solutions GmbH, Germany) (Fig. 6a). To SCAPE bodies t to silhouettes alone, silhouettes and
test the accuracy of using the Kinect sensor versus a comrange, and laser data. We nd that range and silhouettes
mercial laser scanner, we rst t the SCAPE model to the together are more accurate than silhouettes alone. The
laser scans using a standard ICP method (Fig. 6b); we alsaneasurement accuracy using the Kinect-based ts is only
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Figure 8:With and without Eq4. (8a) Fit with contour and
depth terms. (8b) Fit with only contour term. (8c) Same as
(8b) but seen from the camera, showing the quality of the
contour match, despite the pose being wildly wrong.

and space requirements of existing scanning systems. All

these systems are based on multiple calibrated cameras and
(c) (d) structured light sources (including lasers). Here we show
that we can achieve similar accuracy with a single inexpen-
sive commodity sensor. We have demonstrated the feasi-
bility of a body scanner that could work in a person's liv-
ing room by combining information about body shape over
several noisy frames. The key idea is to use the shape con-
stancy of the body across frames to accurately estimate a
single shape and varying pose. The approach combines sil-
houettes and depth with a novel silhouette dissimilarityte
that overcomes problems of previous approaches. We show
that measurements of the body can be reliably predicted us-

Figure 5: Widely varying poses (5a) Initialization. (5b),
(5¢) Result. (5d) Result reposed into novel pose.

@ b) © (d) ing a simple linear regression approach and compare favor-
) ) ably to expensive commercial systems.
Figure 6:Comparison to laser scan (6a) Laser scan. (6b) Future work should address the estimation of shape un-

SCAPE model t to laser scan; pose and shape recoveredder clothing. This has been demonstrated in a synchronized

(6¢) Contour + depth tto 4 views, reposed to match pose my|ti-camera capture scenario with silhouettes [6] and wit

of laser scan of same subject. (6d) Difference map showing|aser scans [18]. We believe that it should work with the

areas of similarity (blue) and difference (purple) between kinect sensor. We would also like to improve the opti-

6b and 6c (scale in mm). mization speed to make it interactive. An interactive syste
could provide the user with feedback about how to move to

. . . . improve their body model.
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