
Time to Contact from Active Tracking of Motion BoundariesShanon X. Ju Michael J. Black1Department of Computer Science Xerox Palo Alto Research CenterUniversity of Toronto 3333 Coyote Hill RoadToronto, Ont M5S 1A4 Canada Palo Alto, CA 94304ABSTRACTThis paper addresses the problem of recovering time-to-contact by actively tracking motion boundaries. Unlikeprevious approaches which use image features, we use the camera's own motion to both detect and track objectboundaries. First we develop a framework in which the boundaries of objects are automatically detected usingthe motion parallax caused by the motion of an active camera. We use a correlation-based method to locatemotion boundaries and our work has focused on detecting the motion boundaries early and robustly. A con�dence�eld, which expresses the likelihood that a point lies on a motion boundary, is constructed from the shape ofthe correlation surface. Spatial coherence of object boundaries is modeled with dynamic contours which areautomatically initialized using an attentional mechanism. Then, as the camera moves, the shapes of the dynamiccontours are held �xed and they are tracked under an assumption of a�ne deformation. The a�ne parametersare recovered from the active tracking over time and are used to compute time-to-contact. We illustrate thebehaviour of this active approach with experiments on both synthetic and real image sequences.Keywords: Motion boundaries, time-to-contact, robust estimation, snakes, a�ne motion, rigid contour tracking,active boundary detection. 1 INTRODUCTIONIn a complex and dynamic environment, a robot must be able to detect the boundaries of objects for commontasks like obstacle avoidance and grasping. An active robot can use its own motion by exploiting the e�ect ofmotion parallax to aid in the recovery of these object boundaries. Previous researchers have shown how an activeobserver can use its own motion to compute di�erential image invariants and use these to estimate surface slantand time-to-contact (TTC).6 These approaches have focused on the tracking of features in the brightness imagewhich may not correspond to the physical boundaries of objects in the scene.In this paper we show how these results can be extended so that the camera's own motion can be used toestimate the location of object boundaries. These object boundaries are then tracked as the camera moves usingan assumption of a�ne deformation of the object contour. We illustrate the behavior of this active approachto boundary detection and rigid a�ne model tracking with experiments which show how the recovered a�neparameters are used to compute time-to-contact. Time-to-contact is de�ned as the current estimate of the timeuntil an observer either collides with, or passes, an object in its path if it continues with the same relativetranslational velocity. This information is important to a moving robot that must avoid obstacles, pass throughdoors, or grasp objects. The primary measure of TTC is derived from the �rst order di�erential invariants of theimage velocity �eld.6,12,18We propose a new framework for estimating TTC by active tracking of motion boundaries. The framework1This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.



has four levels. First, motion boundaries are detected in a sequence of images using a correlation-based ap-proach. Most previous approaches to motion discontinuity detection have assumed that the optical ow �eldhas already been recovered.16 Another class of techniques recovers discontinuities and ow simultaneously usingline processes13 or weak constraints.10,14 These approaches are computationally expensive and currently are notappropriate for discontinuity detection in an active environment. Our approach is novel in that we recover motionboundaries early; that is, before the computation of optical ow.4 Second, the discontinuities correspond to sur-face boundaries in the world, and hence in practice, we can assume that such boundaries have spatial coherence.Spatial coherence is enforced using controlled continuity splines (ie. Snakes).11 Unlike previous approaches whichhave relied on manual initialization of the snakes6 we exploit an automatic initialization scheme based on anattentional mechanism.7 Third, the motion boundaries of the rigid objects are tracked over time. Assuming ana�ne transformation of the feature shapes, we present a novel method to recover the a�ne parameters by rigidcontour tracking. While standard snakes are used to model the spatial coherence of object contours, only a�nedeformations of the snake are allowed between frames. Finally, time-to-contact of the object is estimated fromthe a�ne parameters for deliberately forward motion.Cipolla and Blake6 present a method to track a closed image contour using B-spline snakes and to estimateTTC of the object from the temporal changes in the area of the closed snake. Their approach avoids estimatinga dense optical ow �eld and its partial derivatives. Although the tracking of intensity features is simple andaccurate, there is no guarantee that these features correspond to physical properties of the scene. If informationabout time-to-contact is to be used for obstacle avoidance or grasping, we would like to track physical boundaries inthe scene. Black and Anandan4 exploit �ve constraints to achieve early detection of motion discontinuities. Theirwork can be divided into two parts. First, they construct a con�dence �eld corresponding to the measurementof the surface discontinuities by taking into account three properties of the correlation surface. Next, a snake isinitialized manually near the discontinuity, and the snake will automatically be attracted to the local maxima,which correspond to the motion boundaries. The �rst and second levels of our framework are similar to theirapproach.Our approach is novel in that the goal of our tracking process is not only to �nd the new position of the contours,but also to recover the approximate linear transformation of the shape between each frame. This transformationis related to the divergence and deformation of the image velocity �eld, as well as the 3D structure of the sceneand the motion of the viewer. The remainder of this paper is organized as follows: From Section 2 to Section5, each of the four levels of the framework is developed in detail and illustrated with experimental results onsynthetic data. We then present the results of a real image sequence. Finally, we will discuss limitations of thecurrent approach, future work, and draw a brief conclusion.2 EARLY DETECTION OF MOTION BOUNDARIES2.1 Correlation Based Approach { ReviewCorrelation-based matching exploits the assumption of data conservation; that is, the local brightness distri-bution remains unchanged although its location may change. The basic idea can be expressed as the minimizationof the following error measure:E(u; v) = X(x;y)2R�(I(x; y; t) � I(x + u�t; y + v�t; t + �t)) (1)where [u, v] is the displacement, R stands for the correlation window, � is an error norm, I is the brightnessfunction at time t, and �t is a small time step. When �(x) = x2, Equation 1 is the standard Sum-of-Squared-Di�erences (SSD) measure.2 The correlation surface is de�ned over a search window with the height of the surfacecorresponding to the error measure, E(u; v), of a particular displacement.



The correlation approach assumes the ow �eld within the correlation window can be approximated as auniform translational motion. When multiple motions exist within a correlation region, the data conservationconstraint is violated, and the correlation surface may contain multiple minima corresponding to the di�erentmotions. Black and Anandan4 pointed out that the presence of multiple minima in the correlation surface indicatesthe possible presence of a motion discontinuity. Therefore, with some additional constraints, it is often possibleto detect the motion discontinuities before the computation of optical ow.2.2 Robust EstimationStated simply, the goal of robust statistics is to estimate the parameters of a model that best �t a set ofmeasurements, when a minority of the data may be outliers.9 Consider the minimization problem:mina Xs2S �(ds � u(s; a));where u(s; a) is the model, a is the parameter vector, and ds; s 2 S is a set of observations of the data. When theerrors in the measurements are normally distributed, the optimal maximum-likelihood estimate is obtained when� is quadratic, i.e., least-squares estimation. However, the model assumptions may be violated; for example, incomputing optical ow, the uniform motion model within a region is violated at motion boundaries. To cope withthese problems, robust estimators have been used instead of least-squares estimation.5An estimator is said to be robust if it is insensitive to outliers. The problem with the least-squares approach(Figure 1a) is that an arbitrarily bad outlier can produce an arbitrarily bad estimate regardless of the sample size.Hampel et al.9 introduced the approach based on inuence functions. Loosely speaking, the inuence functionIF is proportional to the �rst derivative of �-function and measures the asymptotic bias caused by contaminationin the observations. For least-squares estimation, the inuence of outliers increases linearly and without bound(Figure 1b). To increase robustness, the robust redescending estimators in maximum likelihood estimation areintroduced.9 These estimators have the property that, beyond a threshold, the inuence of outliers decreases.Figure 1c and 1e show two examples of robust �-functions.Correlation assumes a single motion within the correlation region. When computing the correlation at amotion boundary, the measurements from one surface can corrupt those of the other surface. To reduce thee�ect of outlying measurements we replace the quadratic with a robust �-function. Figure 2b and 2c compare thecorrelation surface generated using the least-squares estimator and truncated quadratic estimator. The surfacesare computed at the corner of the metal bracket (Figure 2a) from the NASA Coke can sequence. The two peaksin Figure 2c correspond to the two motions present in the window. It is clear that the robust estimator makesthe peaks more visible.2.3 Con�dence MeasuresThe shape of the correlation surface is typically quite complex. It not only contains information about themotion of the surface, but is also related to the brightness patterns of the region.2 In the case of repetitivestructures, the surface is ridge-like or multi-ridge-like. In a homogeneous area, the surface shows very littlevariation. We need a pointwise con�dence �eld to show the presence of a motion boundary. This �eld will becomputed before the computation of the dense optical ow �eld. We choose three measures:Cpeak: the height of the best peak: The lower the measure, the less the match error. At a motion boundary,the best match error of the point should be a local maximum in a neighborhood.
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(a) (b) (c)Figure 1: (a) Least-squares error norm and its inuence function. (b) Truncated quadratic �-function and itsinuence function. (c) Lorentzian �-function: log(1 + x22�2 ), and its inuence function: 2x2�2+x2 , where �2 = 18 .Csteep: the steepness of the best peak: Assuming the best match is (u; v), the steepness of the peak iscomputed as: 1Xi=�1 1Xj=�1!i;j E(u+ i; v + j) !�1;�1 !0;�1 !1;�1!�1;0 !0;0 !1;0!�1;1 !0;1 !1;1 = 1 4 14 -20 41 4 1where E(u; v) is de�ned in Equation 1 and !i;j is the weight. The higher the measure, the more likely a steeppeak exists. Therefore, at the motion boundary, this measure should be the lowest.CS : the ratio of the height of the two best peaks: When there are two di�erent motions within thecorrelation window, the surface will contain two apparent peaks. Intuitively, if the second peak is nearly as goodas the �rst one, the likelihood of a discontinuity is high. A simple measure is de�ned as the ratio of the heightof the two best peaks: �0=�1. Where �0; �1 are the match errors for the �rst and second peaks respectively. Incertain well de�ned cases, the measure has a maximum of 1.0 at a motion boundary and falls o� as distance fromthe boundary increases. If the relative motion of the surfaces is small, then due to the discretization, the peaksmay merge together and this measure will be unreliable.We can combine these three measures to form the con�dence �eld 	 where the maximum points correspondto the area where there is high con�dence that a discontinuity is present:	 = �1Cpeak � �2Csteep + �3CS ;where �i are scalar weights. Figure 2d shows one image from a synthetic sign sequence, in which a slantedtra�c sign is translating towards the viewer with respect to a stationary background. The correlation surface iscomputed when the search window is 11x11 and the correlation window is 15x15. Figure 2e, 2f, 2g, and 2h showthe Cpeak, Csteep, CS , and 	 con�dence measure �elds respectively. Cpeak and Csteep are scaled so that the lowestvalue is 0.0, while highest is 1.0, and CS is scaled to 0.0-2.552. The corresponding weights used to compute 	 are:�1 = 0:06, �2 = 0:01, and �3 = 3:0.2Those ranges are the same for the real image sequences in section 6.2.



(a) (b) (c) (d)
(e) (f) (g) (h)Figure 2: (a) A correlation window (white square) on a motion boundary. (b) SSD correlation surface of theregion shown in (a). (c) Robust correlation surface of the same region. (Figures (b) and (c) are inverted fordisplay). (d) one image from the tra�c sign sequence. (e) Cpeak con�dence measure �eld. (f) Csteep con�dencemeasure �eld. (g) CS con�dence measure �eld. (h) 	 combined con�dence �eld.3 SPATIAL COHERENCE3.1 Snake Model { ReviewMotion discontinuities correspond to the boundaries of objects and hence have spatial extent. We model thespatial coherence of motion boundaries with controlled continuity splines, or snakes.11 Snakes simulate the �ttingof an elastic contour, providing a continuous boundary, to an image feature. Once the snake is interactivelyinitialized near an object contour in the �rst frame, it will automatically track the contour from frame to frame aslong as the feature does not move too fast. The behavior of a snake is controlled by internal and external forces.The internal forces serve as a smoothness constraint, and the external forces guide the active contour towardsimage features. Following the notation from the original model proposed by Kass et al.,11 given a parametricrepresentation of an image curve v(s) = (x(s); y(s)), the energy function is de�ned asEsnake = Z 10 Eint(v(s)) + Eext(v(s))ds: (2)The function Eint represents the internal energy of the active contour and is composed of a �rst and second orderterms: Eint = (�jvs(s)j2 + �jvss(s)j2)=2; (3)where the subscripts indicate di�erentiation with respect to s. Adjusting the weights � and � controls the relativeimportance of the �rst and second terms. Eext represents the external potential P (x; y) = c[G� �	(x; y)], wherec is the weight, G� �	 denotes the image convolved with a Gaussian smoothing �lter, 	 is the con�dence �eld onmotion boundaries. P (x; y) is a scalar potential function de�ned over image plane, which attract snake to intensitymaxima. Minimizing the energy function of Equation (2) gives rise to two independent Euler equations.11 The



tracking behavior of the snake is achieved by numerical, iterative solution of these two equations using techniquesfrom variational calculus.3.2 InitializationIt is well known that one problem with current snake models is that the recovered solution is sensitive to theinitial snake position. In previous work, snakes are either interactively initialized1,4,11 or automatically initializedusing some prior knowledge about the position of the object.6 We present an approach which uses an attentionalmechanism to automatically initialize the snake. The role of attention mechanisms in computer vision is to selectonly the information essential to the current task and ignore the irrelevant details. Thus, attention, or taskguidance, simpli�es computation and reduces the amount of processing.The attention procedure is based on the Culhane and Tsotsos attentional prototype,7 which is composed ofa processing hierarchy and an attention beam that guides selection of portions of the hierarchy. We constructa spatially �ltered and subsampled pyramid in which the lowest level of the processing hierarchy is a region inthe input image, and each successive level is a simple average of the previous level. A winner-take-all process(WTA), which speci�es the \brightest" pixel as the winner, is performed at the top of the hierarchy. The passzone is de�ned as the region that includes the winner and those elements at the lowest level that contribute to thewinner. At each successively lower level, the WTA is only executed within the pass zone from the previous level.Once a winner has been located in the input level, it is considered as the �nal attentional point, and that pixeland a small surrounding zone, the inhibited zone, in the input image are inhibited. The approach is illustrated inFigure 3.Snake initialization algorithm: (i) Perform the attention procedure in the motion discontinuity �eld tolocate the �rst snake node. (ii) Run the attention procedure within a search window R around the current snakenode, �nd a new snake node. (iii) In the input image, inhibit all the points on the path from the previous nodeto the present one. (iv) Repeat step (ii) and (iii) until the stop criteria have been satis�ed. Figure 4a shows theresult of the automatic initialization of a closed snake. The size of search window R is 17x17 and the inhibitedzone is 3x3. The stop criteria are: (a) when the number of snake nodes found exceeds a threshold and (b) whenthe distance between the new node and the start node is less than a threshold. Figure 4b shows the local extremafound by the snake from the initial position.4 ACTIVE TRACKINGUnconstrained snakes su�er from the drawback that they may be attracted by spurious contours if the envi-ronment is too complex or the motion between two frames is not small enough. This is mainly due to the excessiveexibility of the snake model. Ueda et al.17 propose a moderate \sti�ness" that preserves the shape of the trackedobject contour in the previous frame as much as possible. Berger3 adds a term to preserve at best the initialcurvature during the snake process. Curwen et al.8 combine the original B-spline snake model with a parametrictemplate model.19 The dynamic contour is �rst trained by an uncoupled snake, then \frozen" and becomes thetemplate model. Ueda and Berger do not make any assumption about the motion of the objects. Curwen assumesconstant velocity of features, and hence the approach has problems tracking divergent or rotational objects.4.1 Rigid A�ne Snake ModelThe rigid a�ne snake model is built under three assumptions. (i) The target object is rigid. (ii) The distancebetween the object surface patch and the camera is large with respect to the surface extension, therefore themotion of the object between two frames can be approximated by an a�ne transformation. (iii) The change of
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Figure 3: Processing hierarchy of locating the attentional pointthe shape is not too great. An a�ne transformation can be described as:u(x; y) = a1 + a2x+ a3y;v(x; y) = a4 + a5x+ a6y;where u and v are the horizontal and vertical image velocity respectively and the ai are the a�ne parameters.Using vector notation this can be rewritten as_X = � u(x; y)v(x; y) � = XA and X = � 1 x y 0 0 00 0 0 1 x y � ; (4)where A denotes the vector (a1; a2; a3; a4; a5; a6)T , _X stands for the 2D velocity. We parameterize a trackedcontour v0(s) = (x0(s); y0(s))T by s 2 [0; 1] in the previous frame. Our goal is to deform the contour by an a�netransformation from v0(s) to the best position v(s) = (x(s); y(s))T in the current frame such that the followingenergy function (substituting for Eint and Eext in Equation 2) is minimizedE(v) = Z 10 (�jvs(s)j2 + �jvss(s)j2)=2 + P (v(s))ds; (5)where P (x; y), de�ned in section 3.1, is the smoothed con�dence �eld.4.2 Lagrangian Dynamic SystemTerzopoulos15 constructs a dynamical snake system and allows it to arrive at a minimal energy states as itachieves equilibrium. This dynamic model can be derived by applying the principles of Lagrangian mechanics.A Lagrangian dynamic system is speci�ed by a kinetic energy, a potential energy and a dissipative term. Werepresent a dynamic contour by introducing a time-varying mapping v(s; t). The contour is assumed to haveconstant mass density � with respect to the curve parameter s. The kinetic energy of the contour is de�ned asEk(v) = �2 R 10 jvtj2ds: The subscript t denotes a time derivative. We combine the kinetic energy and the snakeenergy function E(v) (Equation 2) to de�ne the LagrangianL(v) = 12 Z 10 �jvtj2ds� E(v): (6)If the initial and �nal positions of the snake are v(s; t0) and v(s; t1), then the deformable model's motion v(s; t)from t = t0 to t = t1 is such that the variation of the integral R t1t0 L(v)dt with respect to v is zero:��v (12 Z t1t0 Z 10 �jvtj2 � �jvsj2 � �jvssj2 � 2 �P (v)dsdt) = 0: (7)



Once set in motion, a dynamic snake with a mass distribution will move perpetually, unless kinetic energy isdissipated. Given the damping density , the Rayleigh dissipation function, Ed(vt) = �2 R 10 jvtj2ds, is de�nedin order to dampen the snake so that static equilibrium can be achieved: Evaluating the appropriate variationalderivatives of Equation 7 and Ed in the dissipation functional, the equation of motion for the snake may be writtenas �vtt + vt � �vss + �vssss = �rP (v(s; t)); (8)with appropriate initial and boundary conditions, and where the subscripts indicate partial derivatives withrespect to t and s, and rP (v(s; t)) is the gradient of the potential. On the left hand side are inertia, damping,stretching, and bending forces. These forces balance the negative gradient of the potential on the right hand side.4.3 Discretization and Estimation of A�ne ParametersAccording to Terzopoulos,15 the discretized version of the Lagrangian dynamics (Equation 8) may in tern bewritten as a second order di�erential equation by applying �nite di�erence methods:M �X+C _X+KX = �rP (X) = f; (9)where the vector X is the collection of the nodal variables, M is the mass matrix, and C is the damping matrix.Both M and C are diagonal matrices with the diagonal element corresponding to the mass or damping densityat a node respectively. K is the sti�ness matrix which is a symmetric pentadiagonal matrix constructed from theweights � and �. _X denotes the nodal velocities. Recall that for a rigid a�ne contour, the nodal velocities canbe expressed as the linear transformation of the nodal variables at the previous time instant ( Equation 4 ). Ifwe assume that the system is massless (i.e., M = 0 ), substituting _X with Equation 4, Equation 9 reduces to thefollowing overdetermined linear equation with only six unknown parameters:CXA+KX = f: (10)Let �At denotes an incremental estimate of these parameters at a time step. The �nal step is to solve the aboveequation iteratively: �At = (XTt�1Xt�1 + !I)�1(!At�1 + f(Xt�1)�KXt�1) (11)Xt = Xt�1 +Xt�1�At (12)At = At�1 + �ATt � A�t�1 OO A�t�1 � A� = 24 1 1 1a1 a2 a3a4 a5 a6 35 ; (13)where ! is a step size. Figure 4c and 4d compare the standard snake model with our model when tracking thediscontinuity sequence. Since the snake model is inuenced by the false con�dence value, it is not able to trackthe target contour. On the other hand, the proposed rigid a�ne tracking model successfully tracked it withoutbeing inuenced. 5 ESTIMATION OF TIME-TO-CONTACTAn a�ne transformation can be decomposed into several independent components which have simple geometricinterpretations.6 Some of the �rst order di�erential invariants of the optical ow �eld are curlv, divv, defv, and �,which denote 2D rigid rotation, divergence, the magnitude of deformation, and the orientation of the deformationrespectively. They can be de�ned from the partial derivatives of the image velocitydivv = ux + vy = a2 + a6;curlv = �uy + vx = �a3 + a5;(defv) cos 2� = ux � vy = a2 � a6;(defv) sin 2� = uy + vx = a3 + a5;



(a) (b) (c) (d)Figure 4: (a) automatic initial position of a closed snake. (b) The snake attracted to the local minimum at the�rst frame. (c) Tracking using the standard snake model (the last frame in the sequence). (d) Rigid a�ne contourtracking (last frame).where v(u; v) is image velocity at an image point (x; y), and ai are a�ne parameters. The optical ow �eldproduced by a rigid body motion is18u = (�fVx + xVz)=Z + Axyf � B(x2f + f) +Cy; (14)v = (�fVy + yVz)=Z + A(y2f + f) � Bxyf � Cy; (15)where [u; v]T is the ow vector at [x; y]T , f is the camera focal length, the 3D rigid motion is a rotation R =[A;B;C]T plus a translation V = [Vx; Vy; Vz]T , and Z = Z(x; y) is the scene depth. The time to contact is de�nedby Tc = ZVz : (16)In the case of pure translation along the viewing axis, the divergence of the optical ow �eld isdivv = ux + vy = Vz(@Z(x; y)@x + @Z(x; y)@y + 2Z ): (17)Under a weak perspective assumption, if the distance between the camera and a surface is large with respect to thedepth extent of the surface, we can assume that the depth of the object is a constant, i.e., @Z(x;y)@x = @Z(x;y)@y = 0.Then, time-to-contact depends only on the divergence of the image velocity ( Equation 17 and 16: )Tc = 2divv = 2a2 + a6 : (18)6 EXPERIMENTAL RESULTS6.1 Synthetic sequenceThere are 9 images in the synthetic tra�c sign sequence. The camera is undergoing a constant translationalmotion along the viewing axis. Initially the camera is at 3.1m from the sign, and the initial depth of the sign is2.85m. The velocity of approach is 0.1m/time unit. The sign is slanted (56 degrees). If the shape of the contouris �xed to be rigid at the �rst frame and it is tracked actively through the last frame, its �nal position may notcorrespond well to the object boundary due to small non-a�ne shape changes which accumulate over time. Weintroduce an adaptive component to the rigid contour tracking to reduce the errors. Before the shape of thecontour at current position is �xed for the tracking to next frame, the rigid contour is allowed to \relax" a little,
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...Figure 5: Rigid tracking of the tra�c sign boundary.i.e., a few iterations of the unconstrained snake will allow it to adapt to small shape changes. Figure 5 shows theadaptive rigid contour tracking sequence.The estimated TTC of the tra�c sign is computed with Equation 18. Due to discretization, the smaller theshape changes, the more unreliable the recovered value. On the other hand, when the change of the shape is notsmall enough, the tracking contour may be attracted by a spurious local maximum. To overcome this tradeo�, weaccumulate the a�ne parameters between several frames. Given i = 0; � � � ; n, Ai denotes the a�ne deformationbetween image i and i + 1. The accumulated a�ne parameter A denotes the a�ne deformation between image0 and n + 1, and the accumulation time is n. Figure 7a compares the true TTC and the estimated TTC ofeach frame from accumulated a�ne parameters. Initially, the small motion during the �rst few frames meansthat the a�ne parameters are not recovered with high accuracy. The accumulation of results over time improvesthe accuracy and after �ve frames the TTC estimate has converged to the correct value. In this experimentthe accumulation window is four frames. We wish to note that Kalman �ltering may provide a mechanism thatintegrates new estimate with existing TTC estimates to reduce the uncertainty over time.6.2 Natural Image SequenceThe original Coke sequence was collected at NASA Ames Research Center and contains 151 frames. Thecamera is moving along the viewing axis with the focus of expansion centered the can. We extract a sub-regionfrom the imagery such that its size is 224x224 (Figure 6a), and we use only the last 50 images in the originalsequence. Since the di�erence between the motion of the can and the background is much smaller than a pixelbetween frames, the discrete correlation method will fail to detect the motion boundary. In order to increase thedi�erence of the motion of the can and the background, we use pairs of images, which are separated by 14 frames,to compute the correlation surface. Both the correlation window and the search window are 15x15. The currentapproach only detects �rst-order motion discontinuities and hence the crease where the base of the can comes incontact with the table is not detected.Since the di�erence between the motion of the can and the background is about one pixel only, some spurioushigh con�dence points will appear. Therefore, in addition to the combination of the three con�dence measuresdescribed in Section 3.3, we add an additional test which is similar to the neighborhood test used by Black andAnandan.4 Given the robust correlation surface, we use the best peak to compute a raw (unsmoothed) ow�eld. Then, in a small neighborhood around each pixel, we look for two anomalous situations which indicate thepresence of a motion boundary: (i) A change in the horizontal or vertical ow of more than 1 pixel. (ii) A changein the horizontal or vertical ow that is inconsistent with forward motion. When either of these is detected, aconstant factor is added to the con�dence �eld at that point. Figure 6b shows the discontinuity con�dence �eldcomputed from a pair of images. The weights used to compute 	 are: �1 = 0:05, �2 = 0:01, and �3 = 0:65.



There are 11 images in the boundary sequence.When dealing with real images, due to the presence of open boundaries, multiple objects, and signi�cant noise,the initialization process is not trivial. An open snake was initialized manually with an starting position roughlynear the boundary of the Coke can. Figure 6c shows the local maximum found by the snake as dark against thebrighter con�dence �eld (frame number is zero). Figure 6d shows the position of the a�ne contour of last imagein the sequence. Figure 7b shows the estimated time-to-contact (TTC) from the accumulated a�ne parameterswith a maximum accumulation time of seven frames. The �gure indicates that the TTC is roughly linear, andcamera velocity is a constant (no ground truth was available).
(a) (b) (c) (d)Figure 6: (a) One image from the NASA Coke can sequence. (b) Discontinuity con�dence �eld (see text). (c)The snake attracted to the local minimum. (d) Rigid a�ne contour tracking.7 CONCLUSIONThere are four main contributions of our work. First, a new framework for automatically detecting andtracking motion boundaries over time was developed. The a�ne parameters are recovered by the rigid contourtracking and are used to estimate time-to-contact. Second, robust estimation was applied to correlation basedapproaches. Third, an algorithm to automatically initialize a closed snake based on an attentional mechanismis developed. Finally, we introduce the notion of rigid contour tracking, and show how a�ne parameters canbe recovered from the tracking of the motion boundaries under the assumption of a linear transformation of theobject contour.At present, the robust correlation method cannot distinguish motion boundaries from multiple motions re-sulting from fragmented occlusion, translucency or reection. Also, the ratio of two peaks test requires thedi�erence of the multiple motions to be larger than a single pixel. Moreover, the accumulation of deformationbetween frames can be improved by the introduction of a Kalman �lter. Finally, the value of this work will bedemonstrated when it is applied to the problems in both motion analysis and active vision. The notions of robustcorrelation, automatic initialization, and rigid contour tracking introduced in this paper have wider relevancethan simply the estimation of time-to-contact.8 REFERENCES1. A. A. Amini, S. Tehrani, and T. E. Weymouth. "Using dynamic programming for minimizing the energy ofactive contours in the presence of hard constraints". Proc. ICCV, pages 95{99, Dec. 1988.2. P. Anandan. "A computational framework and an algorithm for the measurement of visual motion". Inter-national Journal of Computer Vision, 2:283{310, 1989.
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