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Adaptive Offset Correction for Intracortical
Brain–Computer Interfaces

Mark L. Homer, Janos A. Perge, Michael J. Black, Matthew T. Harrison, Sydney S. Cash, and Leigh R. Hochberg

Abstract—Intracortical brain–computer interfaces (iBCIs) de-
code intended movement from neural activity for the control of ex-
ternal devices such as a robotic arm. Standard approaches include
a calibration phase to estimate decoding parameters. During iBCI
operation, the statistical properties of the neural activity can de-
part from those observed during calibration, sometimes hindering
a user’s ability to control the iBCI. To address this problem, we
adaptively correct the offset terms within a Kalman filter decoder
via penalized maximum likelihood estimation. The approach can
handle rapid shifts in neural signal behavior (on the order of sec-
onds) and requires no knowledge of the intended movement. The
algorithm, called multiple offset correction algorithm (MOCA),
was tested using simulated neural activity and evaluated retrospec-
tively using data collected from two people with tetraplegia oper-
ating an iBCI. In 19 clinical research test cases, where a nonadap-
tive Kalman filter yielded relatively high decoding errors, MOCA
significantly reduced these errors ( ; ,
pairwise -test). MOCA did not significantly change the error in
the remaining 23 cases where a nonadaptive Kalman filter already
performed well. These results suggest that MOCA provides more
robust decoding than the standard Kalman filter for iBCIs.

Index Terms—Adaptive filtering, brain–computer interfaces
(BCI), brain–machine interfaces (BMI), Kalman filter, motor
cortex, neural decoding.
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I. INTRODUCTION

I NTRACORTICAL brain–computer interfaces (iBCIs) seek
to decode intended movement from neural activity. A mi-

croelectrode array chronically implanted in the cortex records
the signals and sends them to signal processing hardware and
software to extract informative features and then estimate
motor commands, such as raising the right arm. The technology
has been tested and developed in animals [1]–[6] and in early
demonstrations by people with neurological injury or disease
[7]–[9]. Recent accomplishments include three dimensional,
iBCI driven robotic arm reaching and grasping by neurologi-
cally intact nonhuman primate subjects [10] and by people with
paralysis of the arms and legs [11], [12]. This recent progress
offers hope that iBCIs will one day restore motor control for
people with paralysis.
During iBCI setup, a calibration process is typically used to

set the parameters of the decoding algorithm (filter). During cal-
ibration, the user attempts a series of instructed movements and
the neural signals are recorded. The overt actions of trained non-
human primates can be directly measured [1]–[6]. For people
with paralysis, intended actions are assumed to match those re-
quired to accomplish the directed tasks [9], [11], [13]. With the
inputs and outputs of the filter known, its internal parameters
then can be estimated to capture the statistical connection be-
tween the neural recordings and intended movement.
However, sometimes during iBCI operation, the relation-

ship between the neural signal and intended movement might
change. Several studies have reported this phenomenon, called
nonstationarity, in which unexpected changes occur in the sta-
tistical characteristics of the neural signals [4], [7], [14]–[20].
For instance, in monkeys, the statistical dependency between
kinematics and binned counts of detected action potentials, i.e.,
spike counts, changed within a few minutes [15]. 84% of units
underwent statistically significant changes in mean firing rates
in a retrospective analysis of 22 sessions where people operated
an iBCI [20]. These neural signal instabilities, combined with
a nonadaptive decoding algorithm, can introduce decoding
errors, rendering the iBCI less useful or even unusable until the
decoder is recalibrated [17], [20].
Electrode placement [21], electrode design [22] and how the

neural features are extracted from the signals [19], [23], [24]may
have an effect on signal stability. However, in one study,much of
the intra-day nonstationarity could not be attributed to technical
artifacts suggesting that the cause is oftenphysiological [20].The
instabilities may arise from changes in motor or cognitive states
not modeled by the decoding algorithm. While modeling more
states might improve decoding performance [25], accounting
for all the relevant causal factors may not be feasible.
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To address this problem, iBCI operation could be halted
and the decoding algorithm recalibrated, for example, by the
user actively using the iBCI to complete a series of preset
exercises. Data from this “closed-loop” variant of calibration
can be combined with previous calibrations to retune the filter
[3], [10]–[12], [17], [26]–[28]. The more time spent calibrating
the filter, however, the less time there is available for the user
to make use of the iBCI. For a fully automated and practical
iBCI, such interruption of iBCI use for recalibration is not
desirable.
Ideally, a decoding algorithm would autonomously and

“silently” (without disturbing the user) adapt to the nonsta-
tionarities that occur during iBCI operation. Differing from
“closed-loop” filter recalibration techniques, this capability
calls for the filter to adjust its tuning parameters without
knowledge of the true motor states or objectives. To this end,
an adaptive linear filter [29] and point process filters [30]–[32]
have been evaluated with simulated data. Dual Kalman filtering
was run offline on experimental data from monkeys [33]. In
both offline and online conditions, also with monkeys, an
unscented Kalman filter updated its parameters via a Bayesian
paradigm [34]. In the latter two approaches, the filter’s parame-
ters were constantly adjusted by assuming the prior motor state
estimates were close to their true values.
Here, we develop an adaptive Kalman filter that adjusts an

otherwise constant term, the offset vector, in the tuning model.
For the first time, we present a method that can handle large,
sudden nonstationarities and demonstrate improved perfor-
mance over a standard, nonadaptive Kalman filter in offline
analysis of data from two people with tetraplegia using an iBCI.
Underlying the technique is a novel framework that employs
penalized maximum likelihood estimation to implement a
multiple offset correction algorithm (hereafter referred to as
MOCA) in order to adapt the Kalman filter. The approach is
similar to those designed to construct robust filters in the face
of unknown inputs [35], [36]. Perhaps most relevant to our
approach are filters built to handle large unknown impulses that
are sparse in time [37], [38]. They also perform a search over a
branching set of possibilities, each a solution from closed-form
calculations, to determine if and when an impulse has occurred.
This report presents the general MOCA framework as well

as a specific implementation. Methods and data for evaluating
MOCA follow, including simulations and offline, retrospective
analysis of clinical research sessions. The results demonstrate
the improvement that MOCA has over its nonadaptive counter-
part.

II. DECODING METHODS

A. Generic Kalman Filter

The Kalman filter [39], [40] has been successfully used in
iBCIs [9], [11], [13], [41], [42]. At its core, the Kalman filter
assumes a Gaussian-linear model

(1)

(2)

(3)

where is the time step, is the 1 motor state vector, is
the 1 neural feature vector, all model parameters reside in
the matrices , , , , , and the offset vector ,
and is a multivariate Gaussian distribution with mean
vector and covariance matrix . The key statistical depen-
dency between the neural features and motor states is captured
by (3) and is sometimes referred to as the tuning model.
At the current time step, , the filter estimates the motor

state, , given the feature history from the first time step to
the present, (or alternatively ). Let con-
ditioned on be written as or . Simi-
larly, let conditioned on be written as or .
Using this notation, one way to arrive at the Kalman filter is to
maximize the a posteriori probability density (MAP) of

(4)

Under models (1)–(3), can be arrived at via recursive cal-
culations [39], [40]

(5)

where, for as well as initializations
and , we have and

.

B. Standard, Nonadaptive Kalman Filter for iBCI Applications

In the general formulation (1)–(3), the matrices and offset
vector can change between time points. However, in iBCI appli-
cations, these parameters are usually assumed constant in time

(6)

(7)

Doing so simplifies the process of learning their values from cal-
ibration data. During filter calibration, the participant performs
tasks where is recorded and is assumed known over many
time steps. is set to the feature means over samples whose
values average out approximately to zero. Values for and
can then be found from linear regression techniques and the re-
sulting residuals combined to form the covariance matrices
and . Details about calibrating the Kalman filter for neural de-
coding can be found in [41] and [42].
As in the generic case, is calculated from a recursive cal-

culation, where now all parameters are time invariant. Further-
more, stabilizes over time to its steady state value, . In the
case of iBCI’s, with time steps typically separated by 100 mil-
liseconds or less, quickly converges to [43]. Considering
the filter under these steady state conditions, we arrive at our
standard, nonadaptive Kalman filter

(8)
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C. General MOCA Framework

Changes in neural activity unrelated to movement can intro-
duce decoding errors [20]. In order to approximately model the
effects of such nonstationarities in our estimate for , we relax
the assumption of the nonadaptive Kalman filter that is con-
stant in time (7)

(9)

In effect, we go back to the generic Kalman filter model when it
comes to the offset vector (3). The resulting, recursive Kalman
filter estimate of is the same as (8) only is replaced by .
The challenge then becomes choosing values for the ’s in

order to adapt the Kalman filter. In this paper we develop a pe-
nalized maximum likelihood approach for estimating the offset
vector history, , namely

(10)

(11)

where, we define for nota-
tional convenience. The penality term is necessary, because
the standard maximum likelihood estimation severely overfits
the offsets. The penalty term can also be used to introduce
prior knowledge or other constraints into the procedure (see
Section II-D).
It can be shown (see Appendix A) that (11) equates to

(12)

where each is , is com-
puted from (5), is now the prior state estimate generated
by a Kalman filter under observations for and a pro-
posed realization of , and terms not depending upon
have been dropped [44].
Once is attained, we can run the Kalman filter, sub-

tracting the estimated offsets from the feature vectors to arrive
at an estimate for the current motor state via the recursive cal-
culation

(13)

Under this general strategy, a new history is estimated using
(12) at every time step. Thus, is not found recursively, but
rather it is computed at each time step using the full history

. Since the homogeneous part of (13) is the same as the
original nonadaptive Kalman filter, MOCA inherits the stability
properties of the nonadaptive Kalman filter. [45].

D. MOCA Implementation

1) Constraints and Choice of Penalty for : We constrain
our search over possible histories and choose a penalty both
to reflect our observation that neural activity is typically sta-
tionary but, when it changes, there is a change in the average
level of only a few neural features. This is embodied in the
assumption that changes in offsets are sparse (e.g., few neu-
rons are affected) and that changes in time occur rarely. The
approach differs from incorporating the offsets into the hidden
state, where the state transition model is linear and Gaussian.
Choosing linear and Gaussian dynamics allows use of the dual
kalman filter [33]. However, we find our modeling choices of
sparsity and sudden shifts to better reflect the nonstationarties
occurring on timescales less than a minute.
The approach also simplifies estimation of the offsets. We

assume the offsets stay at their calibrated values, , until, at
some point in the recent past, they may or may not have made a
step change to a new constant value. Let the possible shift occur
at and contain the indices of the
offsets that have shifted. Additionally, let denote the amount
each offset has shifted at . The relationship between
the ’s, , , , and , is described by

(14)

For our implementation, was set to 5 s.
To capture our belief that a few nonstationary offsets are more

likely than many at any given point in time, we choose an
penalty

(15)

where is the number of nonstationary offsets. The penalty
causes (12) to be equivalent to minimizing the Akaike informa-
tion criterion [46]. For example, suppose there were 32 neural
features, and we assumed only five of those features had nonsta-
tionary offsets (five nonzero entries in ). Then by (15), .
2) Search Strategy for Choosing Which Offsets are Nonsta-

tionary: Now that permissible values for are completely
defined by and , we can recast (12) as a two stepminimization
process, where first we propose which offsets are nonstationary
and then choose the extent to which they have shifted

(16)
where contains all the nonstationary components of . For
example, if and , then . We can
express in terms of ,

(17)
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Fig. 1. Overall schematic of the MOCA. At each step in the procedure, an
additional offset index, , is added to the nonstationary set, . The decision is
based on improving an objective function, , tied to maximizing the penalized
likelihood. The process terminates when either the step fails to improve or
all offsets are considered nonstationary. The resulting estimates for the nonsta-
tionary offsets, , are then used to correct the Kalman filter.

where is an by identity matrix with columns associated
with assumed stationary offset components; that is, ,
removed. For example,

Because a complete search over all possible combinations for
is intractable, we instead implement the suboptimal strategy of
forward stepwise search (FSS) akin to that used in linear regres-
sion under similar circumstances [47]. The algorithm initializes
to the null set, meaning no offsets have changed. During the

first step, we propose adding one of the offsets to . For each
of the candidates, the procedure estimates (see below) and
subsequently computes . FSS then adds the candidate with the
lowest to . The search continues, adding only one offset com-
ponent per step. The process terminates when cannot be im-
proved by adding an offset to or contains all offsets. Fig. 1
outlines MOCA’s overall approach.
3) Estimation of Nonstationary Offsets: For each proposed

by the FSS, an optimal must be chosen to evaluate . We can
derive an approximate, closed form solution for the inner mini-
mization in (16) to yield an estimate for (see Appendix B)

(18)

where , is the Kalman filter estimate at
time step under the default assumption that none of the offsets

Fig. 2. Description of the 2-D radial-4 center-out-and-back cursor game used to
compare the filters. a) The objective is to move the cursor (trajectory represented
by the black dotted trace) to a randomly chosen, peripheral target (filled in with
gray) and then b) move it back to the center target.

have changed; i.e., , and is a steady-state version of
. The latter exists because, as quickly achieves the steady

state value of , then by the iterative equations above in (5)
and (12), also reaches . Due to (18), is bounded as long
as the ’s are bounded. This fact leads to bounded errors in
estimating , assuming the original nonadaptive Kalman filter
is uniformly asymptotically stable (see Appendix C).

III. SIMULATION TEST METHODS

Before describing experiments with real iBCI data, we first il-
lustrate the behavior of MOCA using a controlled scenario with
simulated neural data.

A. Cursor Motion Data

In order to generate the synthetic data, the velocities of
arm reaching movements performed by an able-bodied person
were recorded and fed into a neural activity simulator. We
constructed a 2-D radial-4 center-out-and-back cursor game
using the MATLAB software platform (Fig. 2). During each
trial, the cursor was moved to within a highlighted, circular
target. The game was played for 60 s and cursor velocities were
sampled at a rate of 10 Hz.

B. Simulated Neural Activity

The simulator contained a tuning model of the form (9) with
32 features, i.e., . For each feature, one movement di-
rection, on average, generated the maximum level of activity.
We distributed these preferred directions equally over the en-
tire 360 range. The model was constructed so that the feature
values (mean subtracted firing rates) varied between .
The Gaussian noise for each feature was independent of the
others and their variances were all set to 10 Hz.
The simulator was run in two modes: stationary and nonsta-

tionary. Under the scenario with nonstationary offsets, the five
features most tuned to a rightward velocity had their offsets in-
creased by 40 Hz above their calibrated values throughout the
entire simulation. This 40 Hz value was selected to generate a
velocity bias that appeared similar in magnitude to the velocity
biases occasionally observed in iBCI use.

C. Evaluation Procedure

Both MOCA and the standard, nonadaptive Kalman filter
were run on the synthetic neural activity to estimate the cursor
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velocity. The models in each filter exactly matched those used
by the simulator, except neither filter was informed about the
40 Hz offset increase when the simulation was run in non-
stationary mode. Besides comparing traces of the estimated
and true velocities, the mean absolute difference ( ) be-
tween them was computed for both the horizontal and vertical
components.

IV. OFFLINE CLINICAL RESEARCH DATA TEST METHODS

A. Study Participants

Two people with tetraplegia and anarthria due to a pontine
stroke enrolled in clinical research studies where they actively
controlled a computer cursor via the BrainGate2 iBCI1 to reach
circular targets [9]. One participant in the study, hereafter re-
ferred to as S3, is a woman who enrolled in the study at age 54.
Participant T2 is a 65-year-old man. Prior to the sessions ex-
amined here, S3 had been working with the iBCI for over 26
months; T2’s prior experience was just two months.

B. Implant

The implant consisted of a 10 10 microelectrode array
(Blackrock Microsystems, Salt Lake City, UT, USA) inserted
into the motor cortex, with the intended site being the hand–arm
region [48], which was determined by preoperative MRI. The
electrodes penetrated 1.5 mm deep in both S3 and T2 and were
spaced 400 apart. Since four electrodes were nonactive by
design, a total of 96 voltage signals were recorded by the array.
The array was connected via insulated gold wires to a titanium
pedestal that was fastened to the skull. The pedestal functioned
as a percutaneous connector through which the voltage signals
were transmitted, via a cable, to amplifiers, analog-to-digital
converters, as well as signal processing hardware and software
on a nearby cart (see [9] for details).

C. Sessions

Participants operated the iBCI to control a cursor on
a computer screen. The trials consisted of either radial-4
center-out-and-back tasks, radial-8 center-out-and-back tasks,
or a random step tracking Fitts metric task. While the details
of the tasks have been detailed previously [9], we briefly
review the key aspects. The purpose of each trial was to move
the cursor through the 2-D space of the screen to reach the
currently highlighted circular target and either dwell on the
target for a predefined time period or select it akin to clicking
with a computer mouse. For radial-4 and radial-8 variants, the
targets were located at the screen’s center as well as equally dis-
tributed along the periphery. Adhering to a center-out-and-back
paradigm, trial sequencing first presented a peripheral target
followed by the center target (Fig. 2). For the Fitts variant, the
targets were presented at random locations on the screen and
the size of the target randomly varied, but otherwise the tasks
followed the same design as the radial-4 and radial-8 tasks.
We analyzed 20 and 22 blocks of trials from sessions with

S3 and T2, respectively. Sessions explored ranged over 22

1CAUTION: Investigational Device. Limited by Federal Law to Investiga-
tional Use.

months (792–1447 days after implant) for S3, whereas T2
sessions spanned eight months (68–270 days after implant).
We chose sessions to encompass a wide range of cursor control
performance.

D. Prefilter Signal Processing

After exiting the pedestal, all 96 voltages were immediately
passed through a cable to signal processing hardware (Black-
rock Microsystems, Salt Lake City, UT, USA). The signals
then underwent amplification, an analog bandpass (0.3 Hz to
7.5 kHz), digitization (30 kHz), and highpass filtering (250 Hz).
Either time and amplitude windows were used to manually sort
spiking units [8] or threshold crossings were employed [11],
[49], [50]. For each unit, the number of spikes in nonoverlap-
ping 100 ms time bins were counted. Each component of the
feature vector corresponded to the count of a particular unit’s
spike or threshold crossing.

E. Evaluation Procedure

Both MOCA and the standard, nonadaptive Kalman filter
were run offline using the recorded neural activity features to
estimate the intended velocity, separate from any decoding that
was done during the session to control the cursor. However,
unlike the simulated data case, we did not know the true in-
tended velocity; that is, we did not know the ground truth of
how the person intended to move during each sample interval.
We did, however, assume the person intended to move towards
the target. Thus, we had a plausible value for the velocity’s
direction, but not its magnitude. At every time step, we com-
puted the angular error, , between the target direction and the
direction of the velocity estimated by the filters. The mean
angular error (MAE) across all time steps, ,
in a trial block was used to measure decoding error; that is

.

V. RESULTS

A. Simulation Tests

In both stationary and nonstationary simulation mode,
MOCA’s offset corrections were recorded over time. When
the simulation was in stationary offset mode, meaning the
offsets did not depart from their calibrated values, MOCA’s
corrections were infrequent and minor (Table I). On average,
only offsets out of 32 offsets were corrected at
any given time. For those offsets that were corrected, the mean
correction was relatively small ( compared to
the average modulation range of 20 Hz).
Under nonstationary conditions, MOCA corrected for all five

of the increased offsets (Table I and Fig. 3). Throughout the
simulation, the estimate was close to the true value of 40 Hz in
all five nonstationary cases. MOCA made very few corrections
to the stationary offsets ( offsets out of 27 stationary
offsets) on average and the associated values were relatively
inconsequential ( Hz versus an average modulation
rate of 20 Hz) (Table I). In addition, MOCA rapidly adapted
to the offset changes. After collecting a sufficient amount of
neural activity history ( s), MOCA immediately detected
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TABLE I
DISTRIBUTION OF CORRECTIONS MADE BY MOCA DURING THREE DIFFERENT
SITUATIONS. BECAUSE ALL FEATURES HAD AN AVERAGE MODULATION
OF , THE SIZES OF THE FALSE CORRECTIONS MADE TO THE

UNPERTURBED OFFSETS WERE RELATIVELY SMALL

Fig. 3. MOCA’s offset corrections while the simulation ran in nonstationary
mode. The colored traces indicate the corrections to five offsets which departed
from their calibrated values by 40 Hz (highlighted by the gray line). The vertical
axis between 4.5 and 37.5 Hz was removed to zoom in on areas of interest.
Because MOCA must wait for a history of features to become available, it does
not attempt to estimate offsets during the first 5 s of the simulation.

the 40 Hz offset change (estimates at 5 s: 39.52, 39.97, 40.14,
40.34, and 40.38 Hz).
In terms of performance, MOCA was similar to the nonadap-

tive filter during stationary simulation mode, i.e., when no off-
sets were perturbed. Specifically, the filters produced similar es-
timates of the velocity. As measured by the mean absolute error
between the estimated and actual values, their performance was
within 1% of each other.
However, when five offsets were increased by 40 Hz from

their calibrated values, the velocities estimated by the filters
differed substantially. Specifically, while the nonadaptive de-
coder’s estimates revealed an error bias, MOCA mitigated that
bias as shown in Fig. 4. Themean absolute deviation dropped by
nearly an order of magnitude, from 0.354 to 0.047 screen units
per second in the horizontal direction under the nonadaptive
filter and MOCA, respectively. In the vertical dimension, the

Fig. 4. Simulation traces comparing the two filters while in nonstationary
mode. Black traces denote true cursor velocity over time. Similarly, gray traces
provide the respective filter’s estimate of the cursor velocity. Mean absolute
deviations, , between the true and estimated cursor velocity along
each component summarize the overall estimation accuracy. The simulation
conditions cover the case where five of the offsets were increased from their
calibrated values, requiring the decoder to adapt.

Fig. 5. Offline comparison between MOCA and the standard, nonadaptive
Kalman filter. Each data point in the plot represents a trial block (S3 designated
with black circles and T2 with black crosses). The horizontal position of each
data point denotes the mean angular error from the standard filter whereas the
vertical position gives the same metric when applying the MOCA variant. The
light grey line is provided for reference as data points below the line indicate a
lower error under the adaptive decoder.

deviation fell from 0.070 to 0.024 screen units per second (both
the width and height of the game area was 1.2 screen units).

B. Clinical Research Session Tests

MOCA was compared to the nonadaptive Kalman filter
using sessions where two individuals operated the investiga-
tional BrainGate iBCI. All filters were run offline to generate
velocity estimates from the feature histories in a retrospective
fashion. Use of MOCA reduced the mean angular error by

( , pairwise -test) (Fig. 5). MOCA had
its greatest beneficial impact in trial blocks where the nonadap-
tive filter gave relatively large error and did not significantly
affect cases where the nonadaptive filter reported relatively
low error. Specifically, when the nonadaptive filter provided
an error above 90 , MOCA yielded an average reduction of

( , pairwise -test). Below 90 , MOCA
may have slightly increased error , but the findings
were not statistically significant ( , pairwise -test).
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On average, across all trial blocks, MOCA corrected
of the offsets. The fraction of corrected offsets

positively correlated with the nonadaptive filter’s performance
error (Pearson’s correlation coefficient ;
t-test). Among those offsets corrected, the level of correction
was relatively large. Normalized to the associated feature’s
standard deviation of modulation, the average was ,
nearly half the level of modulation. When compared to the non-
adaptive filter’s performance error, no statistically significant
correlation was found (Pearson’s correlation coefficient ;

, t-test). One might assume that as the error
of the standard filter increases it is due to more nonstationary
channels. This in turn would suggest more offsets corrected by
MOCA. Taken together, the results suggest that MOCA applied
a higher degree of correction to the more nonstationary blocks
of trials.
MOCA’s ability to rapidly adjust modeling parameters dif-

ferentiates it from other published adaptive filtering methods
applied to iBCI recordings. For example, Li, et al. applied
Bayesian regression with a joint formulation to update parame-
ters every two minutes [34]. We tested the Bayesian regression
technique on the offline clinical data set and found the best
performance to occur when the update interval was reduced to
30 s. Despite the optimization, MOCA still performed better
than Bayesian regression. As compared to Bayesian regres-
sion, MOCA reduced mean angular error by
( , pairwise -test).

VI. DISCUSSION

In this offline analysis, MOCA provided an improvement in
decoding performance when compared with the nonadaptive
Kalman filter, resulting in increased robustness to the decoding
of nonstationary neural signals. When control was relatively
poor with the nonadaptive filter, MOCA often provided reduced
error. During relatively good control under the nonadaptive
Kalman filter, MOCA demonstrated no significant positive
or negative impact. These findings are consistent with the
hypothesis that occasionally iBCI control is degraded by non-
stationarities that can be approximately modeled by offsets to
the baseline firing rate. In these cases, MOCA successfully
adapted the filter parameters and mitigated the effects of the
nonstationarities. Furthermore, by virtue of the algorithm’s
design, the adaptation took place in a few seconds.
The offline nature of the analysis presents limitations, but also

may lead to an underestimate of the benefits. A decoder’s online
performance can vary greatly from its offline counterpart [51].
Online, the person controlling the iBCI can try to correct for
perceived errors generated by the decoding scheme. We antic-
ipate that the adaptive method developed here would mitigate
the nonstationarities sufficiently such that real time corrections
made by the iBCI operator would result in a marked improve-
ment in task performance.
MOCA was developed to address a common observation that

when a person operates an iBCI, systematic changes in feature
offsets can occur [20]. It is postulated that there are many other
types of nonstationary behavior, such as unexpected changes in
tuning direction. Modification and expansion of the presented

adaptive filtering framework could be used to handle these other
cases.
Finally, MOCA’s search to explore which offsets are nonsta-

tionary is a partial one. Computationally, it becomes intractable
to score all possible subsets of the features (aka powerset) as
there are combinations. Better search strategies or more
extensive searches combined with much larger computational
power might yield even greater improvement. For example,
the small and occasional erroneously assigned corrections by
MOCA might be eliminated by backward stepwise search.
MOCA—the presented, adaptive version of the Kalman

filter—improved offline decoding performance on average in
42 sessions where two people controlled an iBCI. Further-
more, the improvements were the greatest when the effect of
nonstationarities were large. The methods are derived from a
penalized maximum likelihood formulation, which serves as
a formal way to model nonstationarities as offsets and adds
an adaptive mechanism to the Kalman filter, already a popular
choice for decoding in iBCIs. Thus, beyond the immediate
usefulness of the instantiated MOCA algorithm, the MOCA
framework provides a foundation for constructing other offset
correction algorithms in iBCIs. MOCA may also be useful in
applications, beyond iBCIs, when a Kalman filter is applied
in the context of nonstationary data. In such cases, the tech-
nique can quickly adapt the filter solely from the observations’
history.

APPENDIX A

We seek to show that (11) equates to (12). Examining (11)

(19)
we see that requires evaluation. Let

and .
As mentioned in Section II-A, the current motor state
given all prior neural features and the entire offset his-
tory follows a multivariate Gaussian distribution, i.e.,

, where and
can be produced from the recursive Kalman filter calcula-
tions (5) with and .
Since and is a linear function of
and , i.e., , then

, where and
.

Inserting into yields

(20)

where is a constant with respect to .

APPENDIX B

We seek to prove the inner minimization of in (16) is solved
approximately by (18). Because we assume a single step change
in the offsets at , summation terms in (16) associated
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with are constant with respect to and thus can be
removed from the optimization

(21)

Next, from its definition, we note that is not a function
of . Additionally, since quickly achieves the steady state
value of , then by the iterative equations above in (5),
also reaches a steady state matrix we label as . Thus, is a
precomputed constant

(22)

Thus, only enters into the objective function through the ’s,
both directly and implicitly through

(23)

In order to express each in terms of , we first rearrange
the recursive equation for in (5)

(24)

We then can calculate the first few iterations for in terms of

which leads us to the general relation

(25)
where we note that is the Kalman filter estimate at time step
when , that is the default assumption that none of the

offsets have changed.
Substituting this finding into the definition for , we have

(26)
In order to further simplify, we again aggregate terms

(27)

(28)

in order to arrive at

(29)

To minimize the objective function,

we compute the gradient and find the critical point

(30)

(31)

We know the critical point is a minimum because the second
derivatives form the Hessian matrix,
where each term is nonnegative definite, since is positive
definite.

APPENDIX C

To better understand error bounds, we note that (18) implies
errors in estimating are bounded, if the ’s are bounded. Let
denote the error bound on the ’s. We can then compare the

state estimate under a perfect estimate for the offsets, ,
to one where the offset error is at its maximum bound,

(32)

Since , we have

(33)

As , . Assuming the original
nonadaptive filter is uniformly asymptotically stable, then
exponentially decays as a function of [45]. By the ratio test for
the series then, is bounded as .
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