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Abstract— Kalman filtering is a common method to decode
neural signals from the motor cortex. In clinical research
investigating the use of intracortical brain computer interfaces
(iBCIs), the technique enabled people with tetraplegia to control
assistive devices such as a computer or robotic arm directly
from their neural activity. For reaching movements, the Kalman
filter typically estimates the instantaneous endpoint velocity
of the control device. Here, we analyzed attempted arm/hand
movements by people with tetraplegia to control a cursor
on a computer screen to reach several circular targets. A
standard velocity Kalman filter is enhanced to additionally
decode for the cursor’s position. We then mix decoded velocity
and position to generate cursor movement commands. We
analyzed data, offline, from two participants across six sessions.
Root mean squared error between the actual and estimated
cursor trajectory improved by 12.2 ±10.5% (pairwise t-test,
p<0.05) as compared to a standard velocity Kalman filter.
The findings suggest that simultaneously decoding for intended
velocity and position and using them both to generate movement
commands can improve the performance of iBCIs.
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I. INTRODUCTION

In intracortical brain computer interfaces (iBCIs), a mi-

croelectrode array implanted in the motor cortex records

neural activity. Computers then decode the neural activity

into intended movements which drive external devices. With

the technology, people with tetraplegia have controlled a

computer cursor as well as robotic aids in clinical research

[1], [2], [3]. iBCIs seek to enable those with paralysis or

limb loss to carry out better activities of daily living.

Kalman filtering is a popular choice for decoding [4].

Here, we explore use of the Kalman filter to control a cursor

to reach several targets on a computer screen. Two dimen-

sional cursor velocity is decoded typically from time binned

counts of extracellular action potentials, i.e. spikes [5], [6],

[2]. However, other motor variables have been decoded in the

context of goal directed reaching using iBCIs. One of the

first successful closed-loop demonstrations decoded cursor

position [7]. Since then, joint torques [8], angles [9] as well

as grip action [10] have also been estimated.

Previously, position and velocity information have been

shown to be encoded in neural activity at the same time

during reach movements [11] and a Kalman filter has si-

multaneously decoded for both [4]. During decoding of an

entire reach movement, factoring in the displayed location of

the cursor reduced the time to reach targets with a neurally

controlled cursor [12]. Here, similar to [4], a Kalman filter

decodes simultaneously for cursor velocity and position.

However, instead of controlling the cursor by integrating

velocity [6] or linking it directly to the decoded position

[4], we mix the velocity and position estimates from the

Kalman filter to generate cursor movements. In people with

tetraplegia making attempted reaching movements, the strat-

egy results in improved offline reconstructions of movement

intention. The boost in accuracy promises to improve iBCIs

for the benefit of those who have lost motor control due to

injury or disease.

II. NEURAL RECORDINGS AND SESSION TASK

A. Recordings

The details of the recordings have been described else-

where [13], [2]. Briefly, two people with tetraplegia, referred

to as S3 and T2 participated in the BrainGate2 clinical

research sessions1. S3 enrolled in the study when she was

54 years old; T2 enrolled when he was 65 years old. A

1CAUTION: Investigational Device. Limited by Federal Law to Investi-
gational Use.



96 microelectrode array (Blackrock Microsystems, Salt Lake

City) was implanted in the hand-arm region [14] of the

motor cortex. Each electrode measured 1.5 mm in length

and they were evenly distributed in a 10x10 grid on a 4x4

mm platform with 400 µm spacing.

B. Signal Pre-Processing

A percutaneous connection sent the voltage signals onto

various stages of pre-processing including amplification, 0.3

Hz to 7.5 kHz analog bandpass filtering, 30 kHz analog-

to-digital conversion, and 250 Hz digital highpass filtering.

For each digitized channel, either time-amplitude windows

or threshold crossings were setup up to detect extracellular

actions potentials, originating from a single cell or a group,

i.e. unit spikes. This spiking activity was then time binned

(100 msec or 20 msec) to supply a vector of spike counts to

the Kalman filter at each time step. Detected spiking units

with a mean and standard deviation > 1 Hz were selected for

the analysis which resulted between 23 to 90 spiking units

depending upon the session.

C. Session Task

We evaluated the decoders using three sessions with S3

and three with T2. Sessions with S3 (T2) were recorded

from 986 and 1003 (67 and 82) days after implantation. We

examined open loop blocks of trials. In the trials, a computer

program moved a cursor through a series of preset motions

on a computer screen. There were five circular targets, one

at the screen’s center and the rest in locations up, down,

left, and right relative to the center target. During a trial,

the cursor moved from one target to the next in a center-

out-and-back fashion, meaning after the cursor completed a

trial taking it to one of the peripheral targets, it would move

back to the center in the subsequent trial (Figure 1a). During

each block of trials, all peripheral targets were visited in a

pseudo-random order. The cursor headed in a direct, straight

line toward each target and its speed followed one of several

possible profiles. All were truncated Gaussian curves (Figure

1b), but they ranged from 2.5 to 5 seconds.

During the trial blocks, the person was instructed to

attempt hand and arm movements as if they were controlling

a computer mouse to generate the same cursor motions as

they saw on the screen. Although their paralysis prevented

any functional arm and hand movements, their intended

reaching movements were assumed to be a close match to

that displayed on the screen. Supporting this assumption,

during a session, the data generated from the blocks were

all used to calibrate Kalman filter decoders that were run

online in subsequent trials providing better than average

neural cursor control.

III. DECODING & CURSOR CONTROL METHODS

A. Kalman Filter

A typical approach in iBCIs is to decode using the time

invariant version of the Kalman filter to estimate kinematic

variables at every time step, k. In the context of our analysis,

the kinematic vector, xk, describes the intended motion the
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Fig. 1. Illustration of task and decoded variables. a) During a trial,
i.e. reach, the trajectory of the cursor (red line) moved from a starting
position (grey) and ended at a target (green). The motion was controlled
by a computer and the person was instructed to attempt movements
as if controlling a computer mouse to match the displayed motion. b)
The cursor’s velocity profile (horizontal component displayed) followed a
truncated Gaussian curve. As a result, the target’s position relative to the
target (horizontal component displayed) changed in a smooth monotonic
manner during the reach. *Distances are in screen units (su) where the
screen is 1.2 su wide by 1.2 su tall.

participant attempts to impart on a computer cursor. The

filter estimates xk from observations of the spike counts at

every time step, zk. The change in xk over time and the

relationship between xk and zk are modeled as

xk = Axk−1 +wk : wk ∼ N (0,W ) (1)

zk = Hxk + θ + qk : qk ∼ N (0, Q) , (2)

where x0 = all zeros and N (µ,Σ) denotes a multivariate

Gaussian distribution with mean vector µ and covariance

matrix Σ. Equation (1) is often called the state dynamic

model and (2) called the tuning model. Model parameters

reside in A, W , H , θ, and Q and are estimated via linear

regression methods. The calibration procedure uses data from

iBCI sessions where the time history of both xk and zk are

assumed known [4].

Given (1) and (2), the maximum a posteriori probability

estimate for velocity at the present time step, n, can be found

using the recursive equations that define a time invariant

Kalman filter [15], [16],

P+

k−1
= AP−

k−1
AT +W

Kk = P+

k−1
HT

(

HP+

k−1
HT +Q

)

−1

P−

k
= (I −KkH)P+

k−1

x̂k = Ax̂k−1 +Kk (zk − θ −HAx̂k−1) , (3)

for k ∈ 1, 2, ..., n with chosen initializations x̂0 = x0 and

P−

0 = the zero matrix.

B. Velocity Based Cursor Control

A standard approach is to solely decode for the two

dimensional velocity vector of the cursor, xk , vk [5], [6],

[2]. The cursor’s commanded location, ĉk, is then controlled

by integrating the estimated velocity, v̂k,

ĉk = ĉk−1 + δv̂k, (4)

where δ is the interval between time steps (100 or 20 msec

for our data) and v̂k = x̂k.



C. Position Based Cursor Control

Alternatively, we can use the four-dimensional kinematic

vector xk ,
[

v
T

k
, r

T

k

]T
, where vk is velocity as before and

rk is the two-dimensional position vector of the cursor. It is

not obvious how to best use x̂k to drive ĉk. One possibility

is to simply use the cursor position component of x̂k as in

[4], namely,

ĉk = r̂k, (5)

which we call position based control. Note, as in Section

III-B, one can also only integrate velocity, ĉk = ĉk−1 +
δv̂k, which turns out to work slightly better than the more

standard velocity based control in III-B (the difference being

the inclusion of position in the kinematic variables).

D. Mixed Velocity & Position Based Cursor Control

Our innovation here is to mix v̂k and r̂k, both simultane-

ously estimated from a Kalman filter, to obtain an improved

method of commanding ĉk via

ĉk = ĉk−1 + αδv̂k + (1− α)δ
‖v̂k‖

‖∆r̂k‖
∆r̂k, (6)

where α ∈ [0, 1] is the mixing coefficient, ‖·‖ denotes

magnitude, and ∆r̂k = r̂k− ĉk−1. The change in ĉk is now

a mixture of two vectors, one is δv̂k and the other points in

the direction of r̂k.

IV. RESULTS

Figure 2 provides example trajectories driven by the three

different cursor control strategies using hold-out data. In

the trial, position based control appears less accurate than

velocity based control. With α = 0.7, mixed velocity and

position control closely tracks velocity control, but appears

more accurate. The better tracking results from the mixing,

where position estimates have some predictive value but are

not completely correlated with those developed by integrat-

ing estimated velocity.
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Fig. 2. Example trial showing the true cursor trajectory during a return
from the peripheral target to the center and estimated versions by the three
control strategies. Markers such as ”x” show the ends of the trajectories.
For mixed control, α = 0.7. *Screen units

We performed five fold cross-validation on each of the six

sessions, resulting in 30 tests. To quantify the performance

during a trial, we calculated the rms error (RMSE) in

euclidean distance between estimated and actual cursor tra-

jectories [4]. Average RMSE over trials was then calculated

for each of the 30 tests and cursor control strategies (Figure

3). Mixed velocity and position control improved RMSE

by 12.2 ±10.5% and 37.8 ±10.7% over velocity based and

position based control respectively (pairwise t-test, p<0.05).

Compared to velocity control, mixed control did better in 28

out of the 30 tests whereas against position control, mixed

control was superior in all trials.
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Fig. 3. Mixing velocity and position estimates improves offline decoding
performance. a) Mixed control’s performance (RMSE) compared to that
from velocity based control and b) position based control. Each point is a
test (30 total) and the grey line denotes where the RMSE values are the
same, meaning all points below the line indicate a lower error with mixed
control. *Screen units
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Fig. 4. Mixed cursor control performance (RMSE) as a function of
the mixing coefficient, α. An α close to one is being driven mostly by
decoded velocity, while α close to zero is influenced mostly by decoded
position. RMSE values for velocity based and position based control shown
for reference (they are not functions of α). Note, at α = 0 or 1, mixed
cursor control is still better than either velocity or position control, since
mixed control simultaneously decodes for position and velocity. In contrast,
velocity control solely decodes for velocity and position control solely for
position. *Screen units



While α = 0.7 yielded the lowest RMSE values on

average, mixed velocity and position control did well under

any setting for α (Figure 4). The data show an over reliance

on either position or velocity fails to do better than a blending

between them. Also, the curve’s approximate convexity and

single minima suggest a clear trend in positive gains achieved

by mixing.

V. DISCUSSION

The results show that mixing velocity and position im-

proves cursor control over present methods in an offline

analysis. Specifically, average RMSE of the trial cursor

trajectories was better than those from prior approaches [4],

[6]. Between the velocity based and position based control,

the former was better, consistent with prior findings [6].

While α = 0.7 gave the best results, the findings are not

overly sensitive to this tuning parameter.

One untested sensitivity is dependence of the results on the

type of task. During the sessions, the person was instructed

to attempt to move the cursor to match that displayed on the

screen, where the cursor moved in a smooth fashion over

a period of seconds. Thus, we view the task as a variant

of pursuit tracking. Differences in the best Kalman filtering

approach have been noted between pursuit and step tracking

[4]. The most appropriate cursor control strategy may be

dependent on the task as well.

A major limitation of the results concerns the offline nature

of the decoding. Performance gaps between novel decoders

and more standard approaches can narrow when people use

the algorithms online within an iBCI to neurally control a

cursor [17]. In the online, closed-loop setting, the person has

constant feedback about the decoder’s ability to estimate their

intended movements and thus can attempt to compensate

for any decoding errors. However, complete information

about the intended movements are also not known, e.g.

desired cursor speed. Thus, offline studies often have better

information on the actual intended movements of the person,

leading to a more direct analysis of decoder inaccuracies.

Nevertheless, a next step is to run the mixed velocity and

position based cursor control online in closed-loop trials.

Doing so will ascertain whether the decoder can improve

task performance. A complementary effort will be to better

capture the interplay between intended velocity and position

in driving neural activity. Possible future advancements in-

clude introducing nonlinearities into the tuning model [18]

in order to improve accuracy even further.
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