Supplement - From Deformations to Parts: Motion-based Segmentation of 3D Objects

Soumya Ghosh ${ }^{1}$, Erik B. Sudderth ${ }^{1}$, Matthew Loper ${ }^{2}$, and Michael J. Black ${ }^{2}$
${ }^{1}$ Department of Computer Science, Brown University, \{sghosh, sudderth\}@cs.brown.edu
${ }^{2}$ Perceiving Systems Department, Max Planck Institute for Intelligent Systems,
\{mloper, black\}@tuebingen.mpg.de

1 Likelihood derivation

Here, we will denote $Y_{j k}$ and $X_{b_{j} k}$ simply as Y and X.

$$
\begin{equation*}
Y \mid X \sim \mathcal{M} \mathcal{N}(A X, \Sigma, \mathbf{I}) \tag{1}
\end{equation*}
$$

It can be shown that [1]

$$
\begin{equation*}
p(Y \mid X, \Sigma)=\int p(Y, A \mid X, \Sigma) d A=\frac{|K|^{3 / 2}}{(2 \pi)^{3 N / 2}|\Sigma|^{N / 2}\left|S_{x x}\right|^{3 / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S_{y \mid x}\right)\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{gather*}
S_{x x}=X X^{T}+K \tag{3}\\
S_{y x}=Y X^{T}+M K \tag{4}\\
S_{y \mid x}=Y Y^{T}+M K M^{T}-S_{y x}\left(S_{x x}\right)^{-1} S_{y x}^{T} \tag{5}
\end{gather*}
$$

Finally, the marginal likelihood is given by

$$
\begin{align*}
& p(Y \mid X) \quad=\int p(Y \mid X, \Sigma) p\left(\Sigma \mid n_{0}, S_{0}\right) d \Sigma \tag{6}\\
& =\int \frac{|K|^{3 / 2}}{(2 \pi)^{3 N / 2}|\Sigma|^{N / 2}\left|S_{x x}\right|^{3 / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S_{y \mid x}\right)\right\} \tag{7}\\
& \frac{\left|S_{0}\right|^{n_{0} / 2}|\Sigma|^{-\left(4+n_{0}\right) / 2}}{2^{3 n_{0} / 2} \Gamma_{3}\left(n_{0} / 2\right)} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S_{0}\right)\right\} d \Sigma \tag{8}\\
& p(Y \mid X)=\int \frac{|K|^{3 / 2}\left|S_{0}\right|^{n_{0} / 2}|\Sigma|^{-\left(4+n_{0}\right) / 2}}{(2 \pi)^{3 N / 2}|\Sigma|^{N / 2}\left|S_{x x}\right|^{3 / 2} 2^{3 n_{0} / 2} \Gamma_{3}\left(n_{0} / 2\right)} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1}\left(S_{y \mid x}+S_{0}\right)\right)\right\} d \Sigma \tag{9}\\
& p(Y \mid X)=\frac{|K|^{3 / 2}\left|S_{0}\right|^{n_{0} / 2}}{(2 \pi)^{3 N / 2}\left|S_{x x}\right|^{3 / 2} 2^{3 n_{0} / 2} \Gamma_{3}\left(n_{0} / 2\right)} \int|\Sigma|^{-\left(3+N+n_{0}+1\right) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1}\left(S_{y \mid x}+S_{0}\right)\right)\right\} \tag{10}\\
& p(Y \mid X)=\frac{|K|^{3 / 2}\left|S_{0}\right|^{n_{0} / 2} 2^{\left(N+n_{0}\right) 3 / 2} \Gamma_{3}\left(\left(N+n_{0}\right) / 2\right)}{|2 \pi|^{3 N / 2}\left|S_{x x}\right|^{3 / 2} 2^{3 n_{0} / 2} \Gamma_{3}\left(n_{0} / 2\right) \mid S_{0}+S_{y \mid x}^{\mid\left(N+n_{0}\right) / 2}} \int I W\left(N+n_{0}, S_{y \mid x}+S_{0}\right) d \Sigma \tag{11}
\end{align*}
$$

The part likelihood is then given by

References

[1] E. B. Fox. Bayesian Nonparametric Learning of Complex Dynamical Phenomena. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2009.

