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Abstract

We develop a method for discovering the parts of an artiedlaibject from
aligned meshes of the object in various three-dimensiarsd . We adapt the dis-
tance dependent Chinese restaurant process (ddCRP)woraligparametric dis-
covery of a potentially unbounded number of parts, whilewsieneously guaran-
teeing a spatially connected segmentation. To allow aisabfsiatasets in which
object instances have varying 3D shapes, we model parthifitsisacross poses
via af ne transformations. By placing a matrix normal-imge-Wishart prior on
these af ne transformations, we develop a ddCRP Gibbs sarmiich tractably
marginalizes over transformation uncertainty. Analyzngataset of humans cap-
tured in dozens of poses, we infer parts which provide qtetiviely better defor-
mation predictions than conventional clustering methods.

1 Introduction

Mesh segmentation methods decompose a three-dimensiidair{esh, or a collection of aligned
meshes, into their constituent parts. This well-studiezbfgm has numerous applications in com-
putational graphics and vision, including texture mappgigleton extraction, morphing, and mesh
registration and simpli cation. We focus in particular dretproblem of segmenting an articulated
object, given aligned 3D meshes capturing various objes¢poThe meshes we consider are com-
plete surfaces described by a set of triangular faces, angbele a segmentation into spatially co-
herent parts whose spatial transformations capture objéctlations. Applied to various poses of
human bodies as in Figure 1, our approach identi es regidtiseomesh that deform together, and
thus provides information which could inform applicaticugh as the design of protective clothing.

Mesh segmentation has been most widely studied as a statiteghg problem, where a single
mesh is segmented into “semantic” parts using low-levehgsdc cues such as distance and cur-
vature [1, 2]. While supervised training data can sometitead to improved results [3], there are
many applications where such data is unavailable, and thygepway to partition a single mesh is
inherently ambiguous. By searching for parts which defoamsistently across many meshes, we
create a better-posed problem whose solution is direcédfulifor modeling objects in motion.

Several issues must be addressed to effectively segmédattiahs of articulated meshes. First, the
number of parts comprising an articulated object is unknavgmiori, and must be inferred from
the observed deformations. Second, mesh faces exhihiigstmatial correlations, and the inferred
parts must be contiguous. This spatial connectivity is rded discover parts which correspond
with physical object structure, and required by target impfibns such as skeleton extraction. Fi-
nally, our primary goal is to understand the structure of horhodies, and humans vary widely in
size and shape. People move and deform in different waysndamgon age, tness, body fat, etc.
A segmentation of the human body should take into accoustr#rige of variability in the popula-



Figure 1:Human body segmentatioheft: Reference poses for two female bodies, and those bodiasredpt
in ve other posesRight: A manual segmentation used to align these meshes [6], aseégneentation inferred
by our ddCRP model from 56 poses. The ddCRP segmentatioovéiscparts whose motion is nearly rigid,
and includes small parts such as elbows and knees absenthfeamanual segmentation.

tion. To our knowledge, no previous methods for segmentieghas combine information about
deformation from multiple bodies to address tbispus segmentatigoroblem.

In this paper, we develop a statistical model which addsesdieof these issues. We adapt the
distance dependent Chinese restaurant progd€RP) [4] to model spatial dependencies among
mesh triangles, and enforce spatial contiguity of the neféparts [5]. Unlike most previous mesh
segmentation methods, our Bayesian nonparametric agpadlae/s data-driven inference of an ap-
propriate number of parts, and uses a af ne transformabiased likelihood to accommodate object
instances of varying shape. After developing our model ictiSe 2, Section 3 develops a Gibbs
sampler which ef ciently marginalizes the latent af ne fisformations de ning part deformation.
We conclude in Section 4 with results examining meshes ofansand other articulated objects,
where we introduce a metric for quantitative evaluationefbdmation-based segmentations.

2 A Part-Based Model for Mesh Deformation

Consider a collection of meshes, each witN triangles. For some input meghwe letyj, 2 R®

full mesh con guration. Each meghhas an associated -triangle reference mesh, indexed tpy
We letx,, 2 R* denote the location of triangke in reference mesh, expressed in homogeneous

encodes the 3D mesh for a person in ppsandXy, is the reference pose for the same individual.

We estimate aligned correspondences between the triarfgoés of the input pose meshgs and
the reference meshés,, using a recently developed method [6]. This approach tbbbandles
3D data capturing varying shapes and poses, and outputeswiich have equal numbers of faces
in one-to-one alignment. Our segmentation model does raerton the details of this alignment
method, and could be applied to data produced by other gumnelence algorithms.

2.1 Nonparametric Spatial Priors for Mesh Partitions

The recently proposed distance dependent Chinese restauoaess (ddCRP) [4], a generalization
of the CRP underlying Dirichlet process mixture models ids a number of attractive properties
which make it particularly well suited for modeling segngidns of articulated objects. By placing

prior probability mass on partitions with arbitrary num&er parts, it allows data-driven inference
of the true number of mostly-rigid parts underlying the alied data. In addition, by choosing an

appropriate distance function we can encourage spatidjacant triangles to lie in the same part,
andguaranteehat all inferred parts are spatially contiguous [5].

The Chinese restaurant process (CRP) is a distribution posgible partitions of a set of objects (in
our case, mesh triangles). The generative process can bebeekvia a restaurant with an in nite
number of tables (in our case, parts). Customers (triapglester the restaurant in sequence and
select a table; to join. They pick an occupied table with probability profponal to the number of
customers already sitting there, or a new table with prditaproportional to a scaling parameter
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Figure 2: Left: A reference mesh in which links (yellow arrows) currentlyrdethree parts (connected
components)Right: Each part undergoes a distinct af ne transformation, gateeras in Equation (2).

The nal seating arrangement gives a partition of the dataene each occupied table corresponds
to a part in the nal segmentation.

Although described sequentially, the CRP induces an exggratrie distribution on partitions, for

which the segmentation probability is invariant to the @idevhich triangle allocations are sampled.
This is inappropriate for mesh data, in which nearby triaaglre far more likely to lie in the same
part. The ddCRP alters the CRP by modeling customer link$éatables, but to other customers.
The linkcy, for customem is sampled according to the distribution

pem=njD;f; )/ (dm) M8 (1)

Here,dmn is an externally speci ed distance between data paimtandn, and determines the
probability that a customer links to themselves rather thaother customer. The monotonically
decreasing decay functidn(d) mediates how the distance between two data points affeeis th
probability of connecting to each other. The overall linkusture speci es a partition: two cus-
tomers are clustered together if and only if one can reacbttier by traversing the link edges.

We de ne the distance between two triangles as the minimatber of hops, between adjacent
faces, required to reach one triangle from the other. A “wimtdecay function of widtHL, f (d) =

1[d 1], then restricts triangles to link only to immediately adjatfaces. Note that this doesn't

limit the size of parts, since all pairs of faces are potdigtiachable via a sequence of adjacent
links. However, it does guarantee that only spatially aundius parts have non-zero probability
under the prior. This constraint is preserved by our MCM@iahce algorithm.

2.2 Modeling Part Deformation via Af ne Transformations

Articulated object deformation is naturally describedthia spatial transformations of its constituent
parts. We expect the triangular faces within a part to defacoording to a coherent part-speci ¢
transformation, up to independent face-speci ¢ noise. fiéar-rigid motions of interest are reason-
ably modeled as af ne transformations, a family of co-lirigapreserving linear transformations.
We concisely denote the transformation from a referenaadte to an observed triangle via a ma-
trix A 2 R® 4. The fourth column oA encodes translation of the corresponding reference tgang
via homogeneous coordinates,, and the other entries encode rotation, scaling, and sitgari

Previous approaches have treated such transformatiorevaseters to be estimated during infer-
ence [8, 9]. Here, we instead de ne a prior distribution cafeme transformations. Our construction
allows transformations to be analytically marginalizedawhearning our part-based segmentation,
but retains the exibility to later estimate transformaiif desired. Explictly modeling transforma-
tion uncertainty makes our MCMC inference more robust apilha mixing [7], and also allows
data-driven determination of an appropriate number ofspart

The matrix of numbers encoding an af ne transformation igirely modeled via multivariate Gaus-
sian distributions. We place a conjugate, matrix normeéise-Wishart [10, 11] prior on the af ne
transformatiorA and residual noise covariance matrix
IW  (no; So)
Aj MN (M; ;K) (2)



Here,np 2 R andSy 2 R3 3 control the variance and mean of the Wishart prior ont. The
mean af ne transformation i® 2 R® 4, andK 2 R* 4and determine the variance of the prior
on A. Applied to mesh data, these parameters have physicapietations and can be estimated
from the data collection process. While such priors are comim Bayesian regression models, our
application to the modeling of geometric af ne transforioats appears novel.

Allocating a different af ne transformation for the motiaf each part in each pose (Figure 2), the
overall generative model can be summarized as follows:

1. Foreachtriangle, sample an associated lick ddCRP( ;f;D ). The partassignments

2. For each posg of each park, sample an af ne transformatiof;x and residual noise
covariance j from the matrix normal-inverse-Wishart prior of Equati@).(

3. Given these pose-speci ¢ af ne transformations andgssients of mesh faces to parts, in-
dependently sample the observed location of each posgleiesiative to its corresponding
reference triangleyin N (Ajz, Xpn: jz,)-

Note that j governs the degree of non-rigid deformation of dait posej. It also indirectly
in uences the number of inferred parts: a larf§g makes large jx more probable, which allows
more non-rigid deformation and permits models which wifiewer parts. The overall model is

p(Y;c A jX;b;D;f, )= p(cjD;f; )
" # #
Y KO T .
P(Ajk; k) N (Yin JAjz,Xpn: jz,)  (3)
j=1 k=1 n=1

mentsz to K (c) parts, and = fng; Sp; M; K g are likelihood hyperparameters. There is a single
reference mesK y, for each object instandg andY; captures a single deformed posexaf .

2.3 Previous Work

Previous work has also sought to segment a mesh into paesd lbasobserved articulations [8, 12,
13, 14]. The two-stage procedure of Rosman et al. [13] rshimizes a variational functional
regularized to favor piecewise constant transformatiand, then clusters the transformations into
parts. Several other segmentation procedures [12, 14]dalekrent probabilistic models, and thus
have dif culty quantifying uncertainty and determiningmppriate segmentation resolutions.

Anguelov et al. [8] de ne a global probabilistic model, anskuithe EM algorithm to jointly estimate
parts and their transformations. They explicitly modeltgpalependencies among mesh faces, but
their Markov random eld cannot ensure that parts are spati@nnected; a separate connected
components process is required. Heuristics are used toniean appropriate number of parts.

Ambitious recent work has considered a model for joint méigimment and segmentation [9]. How-
ever, this approach suffers from many of the issues notedealtioe number of parts must be speci-
ed a priori, parts may not be contiguous, and their EM inference apgears to local optima.

3 Inference

We seek the constituent parts of an articulated model, gibsprved dataq(, Y , andb). These parts
are characterized by the posterior distribution of theaustr linksc. We approximate this posterior
using a collapsed Gibbs sampler, which iteratively dreyvefom the conditional distribution

p(cnjc n;X5YbiDif 5 )/ p(ea Dty )p(Y jz(c); Xb; ): (4)

Here,z(c) is the clustering into parts de ned by the customer litk§ he ddCRP prior is given by
Equation (1), while the likelihood term in the above equafiarther factorizes as

() p

p(Y jz(c); X;b; )= P(Yik 1 X5 k5 ) (5)
k=1 j=1
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whereYj, 2 R® N« is the set of triangular faces in p&rbf posej , andX b k are the corresponding
reference faces. Exploiting the conjugacy of the normalliifood to the prior over af ne transfor-
mations in Equation (2), we marginalize the part-specitetd variablesA;c and jx to compute
the marginal likelihood in closed form (see the supplemenafderivation):

ik i3=2iq i(np=2 Nyg+n
jKj*=2jspj(n0=2 5 Zk7TO

p(ij beik; )= (3Nk=2)jsxxi(3=z)iSo+Sijj((NW"O):z) 3(nT°); ©6)
S = XpkXpk' + K Syx = Y Xp' + MK; (7)
SYJX = ij ij T+ MKM T Syx(sxx) lS;/rx: (8)

Instead of explicitly sampling from Equation (4), a more @ént sampler [4] can be derived by
observing that different realizations of the linkonly make a small change to the partition structure.
First, note that removing a link, generates a partition(c ,) which is either identical to the old
partition z(c) or contains one extra part, created by splitting some exgjgpiart. Sampling new

realizations of, will give rise to new partitiong(c , [ cﬁ”e‘”)), which may either be identical to
z(c ) or contain one less part, due to a merge of two existing pwesthus sample, from the
following distribution which only tracks those parts whichange with different realizations of :

0(Cric n XY bDif s )/ gggzigf) Y Y;X;b;z(c); ) if ¢ Iinksgihaer;\(/jvli(szé,
jJ:]_ P(Yik 11 ke ] Xy kal ko3 ) _
T p(Yis i X bk ) jer POV I X bkt )
Here,k; andky are parts inz(c ). Note that if the mesh segmentatioris the only quantity
of interest, the analytically marginalized af ne transfuationsAjx need not be directly estimated.

However, for some applications the transformations ararettinterest. Given a sampled segmen-
tation, the part-speci c parameters for pgskave the following posterior [10]:

P(A; ik JYSX5 ) IMN (A i Syx St ik S )W (jk j Nk + No; Syjx + So)  (10)

Marginalizing the noise covariance matrix, the distribatover transformations is then
z

P(AK J Y X5 )= MN (A jSyxSedi k5 Sw)IW ( jk jNk + no; Syjx + So) d

= MT (Ajk j Nk + No; Syx St Sux s Syijx + So) (11)

whereMT () is a matrix-t distribution [11] with mea8yx S,,}, andNy + no degrees of freedom.

(Y;Xibizo); )= @

)

4 Experimental Results

We now experimentally validate, both qualitatively and wfitatively, ourmesh-ddcrpmodel. Be-
cause “ground truth” parts are unavailable for the real bpalye datasets of primary interest, we
propose an alternative evaluation metric based on thegiediof held-out object poses, and show
that the mesh-ddcrp performs favorably against compefipgaaches.

We primarily focus on a collection of 56 training meshes,wfd and aligned [6] from 3D scans
of two female subjects in 27 and 29 poses. For quantitatats,teve employ 12 meshes of each of
six different female subjects [15] (Figure 4). For each sabja mesh in a canonical pose is chosen
as the reference mesh (Figure 1). These meshes contain2dh6Q0 faces.

4.1 Hyperparameter Speci cation and MCMC Learning

The hyperparameters that regularize our mesh-ddcrp paigg mtuitive interpretations, and can be
speci ed based on properties of the mesh data under comsider As described in Section 2.1,
the ddCRP distancd3 andf are set to guarantee spatially connected parts. The saffection
parameter is set to a small value= 10 8, to encourage creation of larger parts.

The matrix normal-inverse-Wishart prior on af ne transfationsAj. , and residual noise covari-
ances j , has hyperparameters= fng; So; M; K g. The mean af ne transformatiod is set to



the identity transformation, because on average we expest faces to undergo small deformations.
For the noise covariance prior, we set the degrees of freegonb, a value which makes the prior
variance nearly as large as possible while ensuring thaht®n remains nite. The expected part
varianceS, captures the degree of non-rigidity which we expect pardetmonstrate, as well as
noise from the mesh alignment process. The correspondemcereour human meshes is approxi-
mately0:01m; allowing for some part non-rigidity, we set= 0:01GmandSy = 2 I3 3. K is

a precision matrix set t = 2 diag(l; 1; 1; 0:1).The Kronecker product d¢ ' andSy governs
the covariance of the distribution @ Our settings make this nearly identity for most components
but the translation componentsAfhave variance which is an order of magnitude larger, so beat t
expected scale of the translation parameters matchesfttiat mesh coordinates.

In our experiments, we ran the mesh-ddcrp sampler for 208tites from each of ve random
initializations, and selected the most probable postsaonple. The computational cost of a Gibbs
iteration scales linearly with the number of meshes; oumtinized Matlab implementation re-
quired around 10 hours to analyze 56 human meshes.

4.2 Baseline Segmentation Methods

We compare the mesh-ddcrp model to three competing metfidas.rst is a modi ed agglomer-
ative clustering technique [16] which enforces spatialtiquity of the faces within each part. At
initialization, each face is deemed to be its own part. Aejegarts on the mesh are then merged
based on the squared error in describing their motion byeafransformations. Only adjacent parts
are considered in these merge steps, so that parts reméallgmgmnnected.

Our second baseline is based on a publicly available impiéatien of spectral clustering meth-
ods [17], a popular approach which has been previously uweddsh segmentation [18]. We com-
pare to an af nity matrix speci cally designed to clustects Wgth similar motions [19]. le;e af nity

w T My

between two mesh faces v is de ned asC,, = expf T% wheremy, = J—lz P owis
wj IS the Euclidean distance betwearandyv in posej, w = Jl'— j( wij w)? is the

w t P my, forall M pairs of facew;v.

corresponding standard deviation, #é 7 .,

For the agglomerative and spectral clustering approatchesyjumber of parts must be externally
speci ed; we experimented witl = 5;10; 15; 20; 25; 30 parts. We also consider a Bayesian
nonparametric baseline which replaces the ddCRP priormesh partitions with a standard CRP
prior. The resultingmesh-crpmodel may estimate the number of parts, but doesn't modehmes
structure or enforce part contiguity. The expected numbeads under the CRP prior is roughly
logN; we set = 2 so that the expected number of mesh-crp parts is similargamtimber of

parts discovered by the mesh-ddcrp. To exploit bilatenadregtry, for all methods we only segment
the right half of each mesh. The resulting segmentationes te ected onto the left half.

4.3 Part Discovery and Motion Prediction

We rst consider the synthetic Tosca dataset [20], and s#pbr analyze the Centaur (six poses)
and Horse (eight poses) meshes. These meshes contain 4h@@® and 38,000 triangular faces,
respectively. Figure 3 displays the segmentations of tliledmeshes inferred by mesh-ddcrp. The
inferred parts largely correspond to groups of mesh faceshwindergo similar transformations.

Figure 4 displays the results produced by the ddCRP, as wellabaseline methods, on the human
mesh data. Qualitatively, the segmentations produced Ish+ddcrp correspond to our intuitions
about the body. Note that in addition to capturing the heatliambs, the segmentation successfully
segregates distinctly moving small regions such as kn#lasye, shoulders, biceps, and triceps. In
all, the mesh-ddcrp detects 20 distinctly moving parts fog balf of the body.

We now introduce a quantitative measure of segmentatiolitgusegmentations are evaluated by
their ability to explain the articulations of test meshethwiovel shapes and poses. Given a collec-
tion of T test meshe¥; with corresponding reference meshég , and a candidate segmentation
intoK parts, we compute

1 XX )
E= T Yu  Ag Xokliz: (12)
t=1 k=1



E A
Figure 3:Segmentations produced by mesh-ddcrp on synthetic Tosslaasn§0]. The rst mesh in each row
displays the chosen reference mesh. For illustration, we baly segmented the right half of each mesh.

Here, A, is the least squares estimate of the single af ne transftiomaesponsible for mapping
Xk t0 Yi . Note that Equation (12) is trivially zero for a degenerateison wherein each mesh
face is assigned to its own part. However, segmentationsmilas resolution may safely be com-
pared using Equation (12), with lower errors correspontbrigetter segmentations.

On our test set of human meshes, the mesh-ddcrp model poanegror o = 1:39meters, which
corresponds to sub-millimeter accuracy when normalizettheynumber of faces. Figure 4 displays
a plot comparing the errors achieved by the different methddesh-ddcrp is signi cantly better
than all other methods, including for settingskfwhich allocate 50% more parts to competing
approaches, according to a Wilcoxon's signed rank &%tgigni cance level).

Next, we demonstrate the bene ts of sharing information agdifferently shaped bodies. We
selected an illustrative articulated pose for each of the training subjects in addition to their
respective reference poses (Figure 4). The chosen poses ekhibit upper or lower body defor-
mations, but not both. The meshes were then segmented litethendently for the two subjects
and jointly sharing information across subjects. Figuremdnstrates that the independent segmen-
tations exhibit both undersegmented (legs in the rst sat) aversegmented (head in the second)
parts. However, sharing information among subjects resnlparts which correspond well with
physical human bodies. Note that with only two articulatedes, we are able to generate mean-
ingful segmentations in about an hour of computation. Thisdimited scenario also demonstrates
the bene ts of the ddCRP prior: as shown in Figure 5, the paxtsacted by mesh-crp are “patchy”,
spatially disconnected, and physically implausible.

5 Discussion

Adapting the ddCRP to collections of 3D meshes, we have dpedl an effective approach for
the discovery an unknown number of parts underlying aiga object motion. Unlike previous
methods, our model guarantees that parts are spatiallyectesh and uses transformations to model
instances with potentially varying body shapes. Via a neygllication of matrix normal-inverse-
Wishart priors, our sampler analytically marginalizessfarmations for improved ef ciency. While
we have modeled part motion via af ne transformations, fatwork should explore more accurate
Lie algebra characterizations of deformation manifoldd[2

Experiments with dozens of real human body poses providagijuantitative evidence that our ap-
proach produces state-of-the-art segmentations with rpatgntial applications. We are currently
exploring methods for using multiple samples from the dd@R&terior to characterize part uncer-
tainty, and scaling our Monte Carlo learning algorithmsatedgets containing thousands of meshes.
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Figure 4:Top two rows (left to right) Segmentations produced by spectral and agglomerativeedhgg with

15, 20, and 25 clusters respectively, followed by the meprand mesh-ddcrp segmentatioBsttom row: Test
set results. We display mesh-ddcrp segmentations foraeest meshes, and quantitatively compare methods.
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Figure 5:Impact of sharing information across bodies with varyings. The two rows correspond to the

training subjects. Each row displays the reference posdlustrative articulated pose, mesh-crp and mesh-
ddcrp segmentations produced by independently segmethgregir of poses of each individual, and mesh-crp
and mesh-ddcrp segmentations produced by jointly segngetite chosen poses from both subjects.
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