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Abstract. Three-dimensional object shape is commonly represented in
terms of deformations of a triangular mesh from an exemplar shape. Ex-
isting models, however, are based on a Euclidean representation of shape
deformations. In contrast, we argue that shape has a manifold structure:
For example, summing the shape deformations for two people does not
necessarily yield a deformation corresponding to a valid human shape,
nor does the Euclidean difference of these two deformations provide a
meaningful measure of shape dissimilarity. Consequently, we define a
novel manifold for shape representation, with emphasis on body shapes,
using a new Lie group of deformations. This has several advantages. First
we define triangle deformations exactly, removing non-physical deforma-
tions and redundant degrees of freedom common to previous methods.
Second, the Riemannian structure of Lie Bodies enables a more mean-
ingful definition of body shape similarity by measuring distance between
bodies on the manifold of body shape deformations. Third, the group
structure allows the valid composition of deformations. This is important
for models that factor body shape deformations into multiple causes or
represent shape as a linear combination of basis shapes. Finally, body
shape variation is modeled using statistics on manifolds. Instead of mod-
eling Euclidean shape variation with Principal Component Analysis we
capture shape variation on the manifold using Principal Geodesic Analy-
sis. Our experiments show consistent visual and quantitative advantages
of Lie Bodies over traditional Euclidean models of shape deformation
and our representation can be easily incorporated into existing methods.

Keywords: Shape deformation, Lie group, Statistics on manifolds.

1 Introduction

Three dimensional mesh models of objects play a central role in many computer
vision algorithms that perform analysis-by-synthesis [1–4]. Capturing the vari-
ability of 3D meshes for an object class is critical and the increasing availability
of 3D mesh data enables statistical learning methods to be used to build such
models. In particular, for capturing human shape variation, deformable template
models are popular for representing non-rigid deformations and articulations
[1, 2, 5]. Such models have wide application in vision, graphics, virtual reality,
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Fig. 1. Body manifold. Left: Human shapes as points on a manifold, M . Every point
represents a deformation from a template. Center: Distance between shapes p and q is
measured via a geodesic distance; i.e. the length of the path between them along M .
Right: The tangent space at p, denoted by TpM , is a vector space

shape compression, biometrics, and the fashion industry. Current methods typ-
ically use a Euclidean representation of deformations and measure distance in
a Euclidean space, ignoring the geometry of the space of deformations. These
methods model triangle deformations as elements of R3×3 while the true defor-
mations are only 6 dimensional. Despite the use of heuristics to remove excessive
degrees of freedom (DoF) their deformations might still be noisy or have neg-
ative determinant. The latter is physically impossible (e.g. reflections). In con-
trast, we propose a novel manifold representation of shape deformations (Fig. 1)
that eliminates the above problems and has many other benefits, both practical
and theoretical. In particular, respecting the underlying geometry enables better
statistical learning methods, distance computation, shape interpolation, and the
valid composition of multiple causes of shape deformation.

Here we consider surfaces represented as triangulated meshes. While we illus-
trate our model with human body shapes, the formulation is completely general
and applies to any triangular mesh model (Lie Shapes). We assume a dataset of
registered meshes with the same graph topology of Nt triangles. The deformable
mesh statistical modeling problem has two parts: (I) Given a template mesh T
and a set of training meshes {Mi}, for each Mi, quantify the variation between
T and Mi. (II) Learn a statistical model of these variations. The model should
also support sampling (or synthesis) of new shapes.

For effective statistical learning, it is crucial to have an appropriate shape rep-
resentation. The simplest approach is to work directly with the points in {Mi}
or their displacements from T . While this may work well for rigid objects, it is
a poor choice for non-rigid and/or articulated objects such as the human body
where the deformations are more complex and can result from a composition of
multiple causes. The common approach represents shape in terms of deformation
matrices acting on the triangles of T [1, 2, 6, 5, 7, 8]. Modeling transformations,
rather than the transformed objects themselves, has a long history [9, 10].
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We define an appropriate mathematical representation for mesh deformations
in terms of a manifold. This Lie Body representation is based on a simple new
6D Lie group of triangle deformations (Fig. 2) that eliminates redundant DoF.
The deformations can be computed exactly, in closed-form, without heuristics.
The 6Nt dimensional manifold of Lie Bodies, denoted by M , has a Riemannian
structure inducing a left-invariant metric between shapes that can be computed
in closed-form. This metric defines distances between body shapes in a principled
way using geodesic distances (Fig. 1). It also allows us to compute statistics on
manifolds using methods such as Principal Geodesic Analysis (PGA) [11, 12].
These better capture the statistics of human body shape deformations than do
standard Euclidean methods such as Principal Component Analysis (PCA).

We focus here on human shape and show that our formulation results in a
better, more parsimonious, and more accurate model of shape deformation than
the traditional Euclidean representation. We evaluate performance in several
ways: 1) Our group structure results in meshes that are better behaved and
exhibit lower variance across a database of registered body shapes. 2) For a
fixed number of low-dimensional shape vectors we find that our model is better
able to predict biometric measurements. 3) For a fixed number of shape vectors,
our reconstruction of Euclidean shape is even better than the Euclidean model.
4) Finally we show that our representation better captures properties of body
shape related to human perception.

In summary, our main contributions are: 1) A novel non-linear manifold repre-
sentation for deformations of triangular meshes. This manifold has the minimal
number of DoF required for arbitrary triangle deformations, provides a heuristic-
free way to compute deformation, and eliminates non-physical deformations. 2)
This representation is consistent in the sense it has a group structure: deforma-
tions can be composed or inverted in a meaningful way. 3) We provide a prin-
cipled way to measure distances and interpolate between shapes using geodesic
distances and geodesic paths. 4) We show how statistics on the manifold capture
shape variation over a database of aligned triangular meshes. 5) Closed-form
formulas, or efficient approximations, are given for all computations.

2 Related Work

Sumner and Popović [6] define shape in terms of affine deformations of triangles
from T . A triangle deformation is represented by a 3 × 3 deformation matrix
and a 3D displacement vector. The 9 dimensional space of deformations is under-
constrained as deformations outside the plane of the triangle are undefined. They
deal with this heuristically by adding a fourth virtual vertex defined by the cross
product of two of the triangle edges. Anguelov et al. [5] use these matrices to
define the SCAPE model, which factors deformations due to body shape from
those due to pose. Bălan [13] builds a SCAPE model from the CAEASR dataset
[14] and regularizes the ambiguity in the 3× 3 deformations using a smoothness
constraint that penalizes difference in deformations between neighboring trian-
gles. Hasler et al. [2] learn a multilinear model of affine deformations. Like all the
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above models, distances between deformations are measured in a Euclidean space
with redundant DoF. Hasler et al. [7] use an even higher-dimensional represen-
tation of deformations. They model deformations with 15 DoF and a non-linear
encoding of triangle deformations that captures dependencies between pose and
shape. Again, Euclidean distance still plays a central role.

Note that in fact, triangle deformations lie in a 6 dimensional non-linear man-
ifold. Unlike previous methods, our deformations live on this manifold, have pos-
itive determinant by construction, and thus exclude non-physical deformations
such as reflections.

Chao et al. [8] represent deformations, using an analogy to elasticity, as a
rotation plus an affine residual deformation closest (in a Euclidean sense) to an
isometry. Their affine deformations have positive determinant but have more
than 6 DoF. Additionally, to compute an approximation of their shape distance
and the path between shapes, they require an expensive optimization scheme.
In contrast, we provide accurate closed-form formulas for paths and distances.
Also, in [8] there is no notion of a Lie group or shape deformation statistics.

Grenander and Miller [15] explore the group of scaled-rotations for open 2D
contour deformations. However, in their approach, the group structure is lost
when applied to closed contours as the contour-closure imposes a linear con-
straint. In [16], this restriction is removed but the method is limited to 2D.

The idea of employing Lie groups to model 3D deformations is not new and is
widely used in computational anatomy [10–12, 17–19]. However, these methods
work on volumetric representations rather than triangulated meshes.

Alexa [20] uses a Lie group for triangle deformations but both his motivation
(addressing noncommutativity) and solution (defining a new group operation)
are quite different. Essentially, his approach operates in the tangent space at the
identity of standard matrix groups while ignoring a non-vanishing Lie bracket;
this approximation can be justified only if matrices are close to each other.
Additionally, the set of matrices comprising his group is chosen ad-hoc, and so,
depending on the case, suffer from either excessive DoF or are not expressive
enough to accurately capture arbitrary mesh deformations. Of note, graphics
applications described in [20] (or [21]) can benefit from our representation.

Note that our work is not directly related to the classical work of Kendall
[22], despite the fact we use a manifold representation for shapes. In [22], shapes
are represented by a set of landmarks, and their quotient spaces are studied.
In contrast, our manifold represents a group of transformations acting on 3D
triangular surfaces. For a more recent work on geometric modeling based on
Kendall’s theory, see [21]. Note that since we provide closed-form formulas for
geodesic paths, interpolation (or extrapolation) on our manifold is considerably
simpler than the algorithms presented in [21].

Our use of the words manifold and Riemannian metric should not confuse
the reader with vast literature on non-linear manifold learning in a Euclidean
space. Unlike these approaches, we change the actual representation of the shape
deformations and the manifold is then a natural property of Lie Bodies. These
approaches, however, can still benefit from our representation as they can be
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employed in a Euclidean tangent space to our manifold (to be described later).
Another possible source of confusion might arise due to the term geodesic dis-
tance. Many mesh registration methods try to align meshes so as to preserve
geodesic distances on the surface of the mesh. Here when we refer to a geodesic
distance, it is the distance between two shapes living on a 6Nt dimensional man-
ifold, and not between points on the 3D surface of a particular shape.

In summary, we introduce a manifold representation for accurate arbitrary
non-rigid deformations using a finite-dimensional Lie group acting directly on the
3D triangular surfaces. Our mathematical representation can be easily utilized
in existing methods such as [2, 5], and thus has a wider scope than any such
particular method.

3 Mathematical Model

We begin the mathematical definition of Lie Bodies with the basic definitions of
triangle deformations that represent how T is deformed to a new shape. Next,
we show how such deformations can be described by 6 DoF and how they form
a group that is also a smooth manifold. Finally, we describe the computation of
geodesic distances, geodesic paths and statistics on the (Riemannian) manifold.

3.1 Triangle Deformation

Let (v0, v1, v2) ⊂ R
3 be an ordered triplet defining a (non-degenerate) triangle.

Without loss of generality, we assume v0 = [0, 0, 0]T so we can identify a triangle
with its edge matrix: [v1 − v0, v2 − v0] = [v1, v2] ∈ R

3×2.

Definition 1. Let X and Y be a pair of triangles. Q ∈ R
3×3 is called a defor-

mation matrix (acting on X by deforming it to Y ) if Y = QX.

This defines the standard Euclidean deformations used in previous work. Con-
sider the collection of all triangles {Xt}Nt

t=1 in a template mesh T . Applying
deformations to all Xt independently will typically result in a mesh that is dis-
connected. To create a consistent mesh, we take the standard approach and
solve for a valid mesh where the edges are as close as possible to the edges of
the deformed triangles in a Least Squares (LS) sense [1, 5].

3.2 Imposing a Group Structure

If Y , X and Q are as in Definition 1, then Q is not unique, as Y = QX gives
only six constraints. Previous approaches have resorted to ad-hoc methods to
constrain or regularize the additional DoF [6, 13]. Instead we explicitly work in
an appropriate non-linear 6D space. The intuition is that X can be deformed to
Y by a combination of isotropic scaling, a particular in-plane-deformation, and
a 3D rotation. See Fig. 2 for an illustration. We now make this precise.

Definition 2. GL(n), the general linear group of degree n, is the set of n × n
real non-singular matrices, together with the operation of matrix multiplication.
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Fig. 2. Triangle deformation. Deforming X = [vX1 , vX2 ] to Y = [vY1 , vY2 ]

GL(n) is amatrix group: A group whose elements are square matrices with matrix
multiplication as its binary operation. Every matrix group is a Lie group.

Definition 3. A Lie group G is a group that is also a smooth manifold and
whose operations, composition (G×G → G) and inversion (G → G), are smooth.

See [23] for formal definitions of a smooth manifold and for the smoothness of
these operations. Since G is a group it is closed under composition and inversion.
Note that standard Euclidean deformations, as defined in Definition 1, are not
closed under linear combinations (as used, e.g., in PCA). Moreover, such defor-
mations (let alone their linear combinations) might be singular or have negative
determinant. Thus, they do not form a group under either matrix multiplication
or addition, and might represent non-physical deformations. We will show that
a group structure is important for the statistical analysis of shape deformations
and to enable the principled combination of these deformations. We will also
show that the Euclidean distance is not suitable for measuring differences be-
tween deformations; this too makes statistical analysis with PCA inappropriate.

We argue for a new type of deformation to appropriately model 3D shape
in triangulated meshes. These deformations do not suffer from the problems of
Euclidean deformations, have a group structure, and give rise to a meaning-
ful distance. The simplest component of our representation is isotropic scaling,
which can be defined by a group: Let GS denote the group of R+ together with
the operation of standard multiplication. A second component models in-plane
deformations. Before we define these, we need the following

Definition 4. A triangle (v0, v1, v2) is said to be canonical (or in a canonical
position) if (v0, v1, v2) = ((0, 0, 0), (x1, 0, 0), (x2, y2, 0)), such that x1 > 0, y2 > 0
and x2 ∈ R. In effect, v1 lies on the positive x-axis, and v2 is in the upper open
half of the xy-plane (Fig. 2). Whenever is convenient, we will regard such points
as 2D, dropping the third coordinate.

We now define our in-plane deformations, acting on canonical triangles.

Definition 5. GA �
{
A ∈ GL(2) : A[1, 0]T = [1, 0]T , detA > 0

}
. Equivalently,

GA � {A = ( 1 U
0 V ) : U ∈ R, V > 0} . (1)
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Proposition 1. GA is a subgroup of GL(2). (see [24] for proof)

By a slight abuse of notation, we can also regard GA as a subgroup of GL(3),

using the bijection ( 1 U
0 V ) ↔

(
1 U 0
0 V 0
0 0 1

)
. Remark: GA is not Abelian; if A,B are in

GA, then usually AB �= BA. Geometrically, if A ∈ GA and X is canonical, then
AX is canonical too. Note that the first edge (column) of X equals the first edge
of AX (Fig. 2). Moreover, we have the following

Proposition 2. If X and Y are two canonical triangles, then there exists a
unique (A,S) ∈ GS ×GA such that Y = ASX. (see [24] for proof and formulas)

This is illustrated in Fig. 2. Of course, not all triangles are canonical, hence we
have the third and final component: SO(3), the rotation group:

Definition 6. SO(3), the special orthogonal group of degree 3, is the subgroup
of GL(3) given by SO(3) =

{
R ∈ GL(3) : RTR = I, det(R) = +1

}
.

Fact: If X is a triangle, then we can always find a rotation matrix RX , that
depends on X , such that RXX is canonical. See [24] for details.

Now the entire story in Fig. 2 is complete: If X and Y are two arbitrary
triangles, then the fact above and Proposition 2 imply we can always findRX , RY

in SO(3) such that RXX and RY Y are canonical, and a unique (A,S) ∈ GA ×
GS such that RY Y = ASRXX . Equivalently, Y = RT

Y ASRXX . Setting R �
RT

Y RX ∈ SO(3), yields our triangle deformation equation:

Y = RRT
XASRXX . (2)

Consider X as belonging to the template shape T . Thus, X and RX are fixed.
For varying Y , the triplet (R,A, S) has six DoF: 3 for R, 2 for A and 1 for S. By
construction, det(RRT

XASRX) = V S > 0. We have thus found an invertible 3×3
matrix deforming one triangle to another and this matrix has only 6 DoF. Note
that unlike the traditional Euclidean approach, with 9 DoF, we do not resort
to any heuristic regularization to constrain the excess 3 DoF. Furthermore, the
fact that the determinant is strictly positive eliminates deformations that have
no physical meaning such as reflections.

There still remains one problem. The set
{
RRT

XASRX

}
such that R ∈ SO(3),

A ∈ GA and S ∈ GS does not form a matrix subgroup. Fortunately, this can be
easily fixed, by defining a new group:

Definition 7. The triangle deformation group, denoted by GT , is the set

{(R,A, S) : R ∈ SO(3), A ∈ GA, S ∈ GS} (3)

together with the composition map

GT ×GT → GT , ((R1, A1, S1), (R2, A2, S3)) �→ (R1R2, A1A2, S1S2) . (4)

GT is a direct product of SO(3), GA, and GS and so it too is a group. GT is not
Abelian and has a natural identification with a matrix group using the bijection:

(R,A, S) ↔
(

R 03×2 03×1

02×3 A 02×1

01×3 01×2 S

)
∈ R

6×6 . (5)
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Fig. 3. Smooth Manifold. (left) TpM is a tangent space to M at p. TpM and M
are connected via exp and log. (right) Interpolation (light blue) along a geodesic path
between two human shapes p and q (green)

So far we have discussed the deformation of a single triangle. For a mesh of Nt

triangles, we use a direct product to represent the Lie group of triangular mesh
deformations:M � GNt

T , renderingM a Lie group (and thus, a smooth manifold)
of dimension 6Nt. We use the term M -valued to describe elements in M . The
structure of M gives us group closure (ensuring a consistent representation) as
well as a meaningful measure of distance between shapes. Both distance and
addition are crucial for classical statistical analysis in Euclidean spaces. On a
manifold, which is also a Lie group, these are replaced by geodesic distance and
composition (i.e. the group binary operation). Before we approach the topic of
geodesic distances, we must introduce the concept of a tangent space.

3.3 Lie Groups and Lie Algebras

Standard Euclidean statistical methods such as PCA do not apply to non-linear
manifolds. However, for Lie groups, many statistical tools can be applied with
minor changes by using the concept of a tangent space, which is Euclidean.

We let TpM denote the tangent space to M at p ∈ M (Fig. 3 (left)); e.g., TIM
is the tangent space at the identity. Unlike M , TpM is a vector space, of the same
dimension as M . The connection between M and TpM is via the exponential
and logarithmic maps. For matrix groups, these are the matrix exponential and
logarithm. If A is a square matrix, then exp(A) is defined by exp(A) =

∑∞
n=0

An

n! ,
while log(A) is a matrix B satisfying exp(B) = A. TpM can be identified with
TIM (being Euclidean spaces of the same dimension), while exp connects TpM
and M by a �→ p exp(a); e.g., for p, q ∈ M , set a = log(p−1q) to get q =
p exp(log(p−1q)) (see Fig. 3 (left)). For p = I, this is q = exp(log(q)).

Every Lie group has a corresponding Lie algebra whose general definition is
quite technical [23]. Luckily for R-valued matrix groups we can use the following

Definition 8. Let G be an R-valued matrix group. Its Lie algebra g is given
by the vector space (viewed as the tangent space at I) g = {A : exp(A) ∈ G} =
exp−1(G) and [·, ·] : g×g → g, the Lie bracket of g, is given by A,B �→ AB−BA.

For example, the Lie algebra of GL(n), denoted by gl(n), is given by the set of all
R-valued n×n matrices. Let A,B be in g. In general, exp(A) exp(B) �= exp(A+
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B), with equality if and only if [A,B] = 0. We now describe gT � exp−1(GT ),
the Lie algebra of GT . Naturally, it is defined using the direct product of the
following three Lie algebras: gT = so(3)×gA×gS , where 1) gS � exp−1(GS) is R.
2) so(3) � exp−1(SO(3)) is well known to coincide with

{
A ∈ gl(3) : A = −AT

}
.

3) gA � exp−1(GA) is to be described shortly. The computation of the matrix
exponential (or logarithm) involves an infinite sum (unless A is diagonalizable or
nilpotent). In several cases, however, it is possible to derive closed-form formulas;
e.g., for exp : so(3) → SO(3) and log : SO(3) → so(3), computations are given
by the well known Rodrigues’ formula [25]. The first map is surjective, unlike the
second. The pair does, however, form a local bijection around the zero matrix
in so(3) and the identity in SO(3). For gA and GA, we have the following

Proposition 3. gA � exp−1(GA), is given by: gA = {A ∈ gl(2) : g = ( 0 u
0 v )}.

The maps exp : gA → GA and log : GA → gA form a bijection and can be
computed in a closed-form. (see [24] for proof and formulas)

Proposition 3 is important not only because of the bijectivity; it also provides
simple and exact closed-form formulas; e.g., generic expm and logm functions in
Matlab or SciPy use the Padé approximation [26], are slower, and are not easily
vectorized. Since such computations are needed frequently and apply to all Nt

triangles, this makes their use impractical here.
The map exp : gT → GT is defined by the product map (exp : so(3) →

SO(3), exp : gA → GA, exp : gS → GS). Similarly, the Lie algebra of M is given
by m � gNt

T and the product map exp : m → M is given by an Nt-tuple of
exp : gT → GT maps. See Fig. 1 for an illustration.

3.4 Statistical Analysis, Geodesic Paths, and Geodesic Distances

Geodesic Distance. We first need a way to define distances between points in
M . To this aim, we endow M with a Riemannian structure: For every p ∈ M ,
we define the same inner product 〈·, ·〉 : TpM × TpM → R independently of p,
by taking the standard inner product in R

6Nt . It can be shown that this induces
a geodesic distance on M , of the form d(p, q) =

∥
∥log(p−1q)

∥
∥
F

for p, q ∈ M ,
where ‖·‖F is the Frobenius norm (it is a general result for connected matrix
groups). The block diagonal structure in Eq. (5) enables easy computation: If

pi = {gi,j}Nt

j=1 ∈ M , i ∈ {1, 2} and gi,j � (Ri, Gi, Si)j ∈ GT , then

d(p1, p2)
2 =

Nt∑

j=1

dGT (g1,j, g2,j)
2 (6)

where, for (g1, g2) ∈ GT ×GT (dropping the j notation),

dGT (g1, g2)
2 �

∥
∥log(RT

1 R2)
∥
∥2
F
+
∥
∥log(A−1

1 A2)
∥
∥2
F
+ |log(S2/S1)|2 . (7)

One shortcoming of Euclidean deformations and the associated distance is the
lack of left-invariance; e.g., if Q1 andQ2 are two deformation matrices, one would
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like to have ‖Q1 − I‖F = ‖Q2Q1 −Q2I‖F but this rarely holds (consider the
case where Q1 ∈ SO(3) and Q2 = 2I). In contrast, note that d is left-invariant:
d(p3p1, p3p2) = d(p1, p2) for every p1, p2, p3 in M . This makes our representation
especially useful for methods that factor deformation to several causes such as
shape and pose. Finally, a geodesic path interpolating between p1, p2 ∈ M is
given in closed-form by p(t) = p1 exp(t log(p

−1
1 p2)) where t ∈ [0, 1], p(0) = p1,

p(1) = p2. See Fig. 3 (right). Taking t < 0 or t > 1 is extrapolation.

Interior Mean and PGA. Given a set {pi} ⊂ M , the sample mean is a
linear combination of the data, and might not be in M . A typical replacement is
the sample Interior Mean [27], defined as μ = argminµ

∑
d(pi, μ)

2, which can be
computed by an efficient iterative algorithm [11] that can be applied to each mesh
triangle in parallel. In our experiments convergence is typically reached with few
iterations. This is the only non-closed-form computation required in this work.
However, one can also use a closed-form approximation: μ ≈ exp(1/n

∑
log pi).

We also replace standard PCA by PGA [11, 12]. This amounts to PCA at
TµM . In effect, we first set gi = μ−1pi, and then compute regular PCA on
{log gi}, to get a K-dimensional subspace of TµM . To synthesize from the PGA
subspace, we compose μ with the exponent of a linear combination of eigenvectors
{Vk}Kk=1 ⊂ TµM : μ exp(

∑K
k=1 αkVk). As M is not Abelian, this is not the same

as exp(log μ+
∑K

k=1 αkVk). Note that PGA, so defined, is sometimes viewed as
a linearized PGA; see discussion in [28].

4 Experiments

We model a dataset of 986 body scans of adult women standing in a similar pose
[14]. A template mesh with Nt=16218 triangles is aligned to each of the scans and
we then work with these aligned meshes. Because here we are interested in body
shape, we remove the head and hands for the analysis but they can trivially
be included in the model. Given aligned triangles we compute the M -valued
deformations (and encode them as RRT

XASRX as in Eq. (2)) and Euclidean
deformations (using the method in [13]). We seek a parsimonious statistical
representation of body shape variation where parsimony has two components: it
implies that the model has low variance and low reconstruction error.

Variance Comparison. To fairly compare representations, we measure the vari-
ance in the same, Euclidean, space - (R3×3)NT . While this should give Euclidean
deformations an advantage, we find that the total variance for the Euclidean case
is 1.68 times the total variance of the new deformations. We attribute this to the
fact that our method does not admit non-physical deformations. This suggests
that, even if one avoids a manifold approach, one is still better off computing
M -valued deformations, encoding them as RRT

XASRX , and then working with
these in a Euclidean space.
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Fig. 4. PGA. The single shape in the leftmost column is μ. The other columns
present, from left to right, the first five eigenvectors by showing μ exp(+4σei) (top)
and μ exp(−4σei) (bottom), where ei is the ith eigenvector, i ∈ {1, 2, 3, 4, 5}

Table 1. Mean edge RMS for mesh reconstruction using a subspace

#PC’s 5 10 15 20 25 30 35 40 45 50 100
Euclidean method. Ave. RMS [mm] 2.71 2.53 2.43 2.34 2.28 2.23 2.19 2.15 2.11 2.08 1.91
Our method. Ave. RMS [mm] 2.57 2.43 2.32 2.26 2.21 2.17 2.12 2.09 2.06 2.03 1.88

PCA, PGA, and reconstruction. In addition to low variance, a good representa-
tion must model the data. In particular, we seek a low-dimensional approxima-
tion of body shape variation that captures as much of the variance as possible.
Consequently we evaluate our ability to reconstruct the data meshes using the
Euclidean and our Manifold approaches. We compute the interior mean and
PGA and show the first few eigenvectors in Fig. 3. We also compute PCA for
the Euclidean deformations.

We reconstructed all the meshes using the same number of components com-
puted with PCA and PGA. For each mesh Mi we compute the root mean
squared (RMS) reconstruction error across all edges in Mi and then average the
result over all {Mi}. The results in Table 1 show a lower error for every number
of basis vectors used. Note this is despite the fact that RMS is a Euclidean error.

Human shape perception. We also evaluate the perceived quality of the recon-
structions using a two-alternative forced choice perceptual experiment. This
evaluates how well each representation captures features of body shape that
are important to human perception. Mechanical Turk workers were shown im-
ages like those in Fig. 5 drawn from a set of 300. The center shape always
showed the original mesh (head and hands were removed to focus people on
body shape). On either side, in the same pose, we showed the PGA and PCA
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Fig. 5. Perceptual task. Examples images shown in the shape perception experiment
(workers did not see the “M” and “E” notations). The true mesh is always in the
center. On either side, at random, is either the manifold representation (M) or the
Euclidean representation (E) generated with 20 coefficients. Workers had to indicate
which body looked more like the center. Green indicates examples that were “easy”
(i.e. the manifold was selected as better more than 90% of the time) and red indicates
“hard” examples where workers were roughly split in their decisions

Fig. 6. Linear prediction of body measurements from shape coefficients. RMS
error as a function of the number of coefficients. Left: Average results for length mea-
surements (‘spine to elbow’, ‘shoulder breadth’, ‘stature’, ‘knee height’, ‘spine to shoul-
der’, ‘arm’). Center: Average results for circumference measurements (‘chest’, ‘thigh’,
‘ankle’, ‘under bust’). Right: Cube root of weight. See [24] for additional plots

reconstructions. The left/right location was randomly varied and the recon-
structed bodies were shown in a random order in one of three viewing direc-
tions: profile, frontal, and oblique. Each comparison was presented 10 times and
each worker could try as many of the 300 examples as they wished. Of the
3000 answers, 7 were disqualified for technical reasons. M -valued reconstruc-
tion was preferred in 1670 out of 2993 answers (55.8%). For each of the 300
test images, the portion (usually out of 10) of the workers who preferred the
M -valued reconstruction to the Euclidean was computed. A tie was reached
in 20 % of the cases (59/300) while in 80%, a majority was achieved. When
a majority was achieved, the manifold approach was selected as better signif-
icantly more often: Pr(M won|majority was achieved) ≈ 55/80 = 0.69 while
Pr(Euclidean won| majority was achieved) ≈ 25/80 = 0.31.
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Predicting biometric measurements. An important quantitative measure of body
mesh quality is the accuracy with which body shape can be used to compute
anthropometric measurements. We compute a simple linear regression from sub-
space coefficients to body measurements [4]. We compare three subspaces: PCA
on Euclidean matrices, PCA onRRT

XASRX matrices, and PGA onM -valued de-
formations. The data was split into two halves for training and test sets. Results
are summarized in Fig. 6. There is a clear advantage to the manifold approach,
especially for a small number of coefficients.

5 Conclusions

With the availability of devices like Microsoft’s Kinect, there is increasing inter-
est in modeling the 3D shape of non-rigid and articulated objects – particularly,
human body shape [4]. To model object shape variation we need an appropri-
ate representation and we propose a new Lie group for representing shape as a
deformation from a template mesh. The approach has many nice properties. Rep-
resenting triangle deformations with our Lie group, gives an exact solution for
6 DoF triangle deformations, unlike previous Euclidean methods. The distance
between shapes is properly defined as a geodesic distance on the non-linear mani-
fold of deformations. Statistics of shape variation are represented using Principal
Geodesic Analysis. These benefits come with little additional overhead since the
main equations are efficiently computed in closed-form. In addition to theoret-
ical benefits, we have shown that the Lie representation of shape deformation
consistently outperforms the Euclidean approach.

In future work we will incorporate our representation into models such as
SCAPE [5], which factors body shape variation into separate pose, shape, and
pose-dependent deformations. Here our group structure is ideal for composition
of deformations. While focusing on human bodies, we emphasize the generality
of the approach and envision “Lie Shapes” providing an improved foundation
for shape representation, analysis, and synthesis.
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