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Abstract.

Objective. Motor neuroscience and brain-machine interface (BMI) design is based

on examining how the brain controls voluntary movement, typically by recording neural

activity and behavior from animal models. Recording technologies used with these animal

models have traditionally limited the range of behaviors that can be studied, and thus the

generality of science and engineering research. We aim to design a freely-moving animal

model using neural and behavioral recording technologies that do not constrain movement.

Approach. We have established a freely-moving rhesus monkey model employing technology

that transmits neural activity from an intracortical array using a head-mounted device and

records behavior through computer vision using markerless motion capture. We demonstrate

the flexibility and utility of this new monkey model, including the first recordings from motor

cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this

monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase

of walking and that the average firing rate of the threshold crossings covaries with the speed

of individual steps. On a population level, we find that neural state-space trajectories of

walking at different speeds have similar rotational dynamics in some dimensions that evolve

at the step rate of walking, yet robustly separate by speed in other state-space dimensions.

Significance. Freely-moving animal models may allow neuroscientists to examine a wider

range of behaviors and can provide a flexible experimental paradigm for examining the

neural mechanisms that underlie movement generation across behaviors and environments.

For BMIs, freely-moving animal models have the potential to aid prosthetic design by

examining how neural encoding changes with posture, environment, and other real-world

context changes. Understanding this new realm of behavior in more naturalistic settings is

essential for overall progress of basic motor neuroscience and for the successful translation

of BMIs to people with paralysis.
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1. Introduction

Animal models are central to investigating how the brain senses the ever-changing world

and responds with a large repertoire of possible behaviors. Animal models that focus on

naturally occurring sensations and behavior are increasingly desirable, as the limitations

of studying only simplified sensory-motor functions and their neural underpinnings is

increasingly recognized as stifling progress. For example, in sensory neuroscience, cats

watching movies which capture natural scene statistics expanded our knowledge of how

the visual system processes naturalistic images and time series [1]. In systems neuroscience,

rhesus monkeys are often chosen as the model species because of their ability to perform a

wide variety of sensory, cognitive, and motor tasks including, for example, dexterous arm

movements [2]. However, despite the rhesus monkey’s capacity for a large repertoire of

naturalistic behaviors (e.g., spontaneous, non-instructed peeling and eating of a banana

while swinging in a hammock), most motor studies have historically focused on a relatively

small number of instructed arm movements.

Motor studies of this sort have focused on so few behaviors because of the technologies

needed for performing the necessary measurements. Monkey models for motor neuroscience

require two simultaneous measurements, neural and behavioral. Traditional experimental

frameworks record neural activity through tethered (wired) connections (e.g., [3,4]) requiring

a reduced range of motion, such as a fixed head posture and restricted arm movements, to

protect both the monkey and the sensitive recording electronics, as illustrated in figure 1(a).

We refer to these traditional monkey models as “head-fixed models” because the head is

often braced in place to prevent the monkey from pulling on the tethered connection or

vibrating the head or chair which could introduce micro-phonic electrical noise into the

neural recordings. Methods for gathering behavioral measurements can also be cumbersome

for less restricted or completely free movement. A highly productive head-fixed model, and

therefore posture-fixed model as well, is the reaching monkey model where monkeys perform

2D or 3D arm movements and reaching behavior is captured by tracking the endpoint of

the arm by target location (e.g., [5]), with a manipulandum (e.g., [6]), or with an infra-red

camera tracking system (e.g., [7, 8]), by tracking markers on the whole arm [9], or by direct

measurement of the arm position while the arm is in a two degree-of-freedom exoskeleton

using joint-angle encoders [10, 11]. These methods limit movements to the region of space

where the arm can move but without changing posture and to the ranges of the behavioral

sensors. These methods are sufficient for studying 2D and 3D movements such as point-to-

point reaching within the aforementioned restricted workspace.

However, fixed posture 2D and 3D arm movements are a limited subset of all natural

behaviors, and it is unclear how well scientific and BMI results from limited workspace

experiments generalize to broader, more naturalistic behaviors in unconstrained workspaces.

For example, though fairly high levels of BMI cursor control and prosthetic arm control

is now possible (e.g., [12–15]), it is unclear how well these results based on head and

shoulder immobilized rhesus monkey models and initial clinical trials in people with paralysis
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(tetraplegia) will generalize to cases where more movement remains intact (e.g., single-arm

amputation, so other arm and legs can still move) and thus much larger workspaces are

relevant and potential interaction among postural, movement, cognitive, and environmental

context signals are possible. Moreover, recent studies demonstrate that the relationship

between neural activity and movement is complex [16, 17]. Thus, when motor neuroscience

experiments focus on a small number of reaches, they may limit our ability to decipher this

complexity in neural responses.

One potential solution is to develop additional head-fixed monkey models that examine

other behaviors, such as the bipedal walking model [18]. However, examining more behaviors

in isolation might not untangle the complexity of responses without knowing how neural

ensembles respond across behaviors. To examine how neural ensembles in the motor cortex

relate to a wide variety of voluntary movement, we propose that a more flexible monkey

model is needed. We refer to these flexible models as “freely-moving monkey models.”

Compared to head-fixed monkey models, freely-moving monkey models are more difficult

to design and make operational, but they may well involve less animal training. These

monkey models require recording neural activity and behavior using technologies that do not

encumber movements, as illustrated in figure 1(b). Therefore, traditional neural recording

systems with a tethered connection must be replaced with head-mounted recording systems

[19]. A number of systems have been designed for such telemetered neural recordings (i.e.,

wireless transmission of neural data from the electrodes/head to a nearby receiver in the

room) as interest in gathering these types of measurements has increased [20–31]. Behavior

must also be recorded in a larger environment than in traditional head-fixed models, for

example in a home cage (in-cage model) or in the wild (in-the-wild model). One possibility

for gathering behavioral measurements is by using computer vision techniques (e.g., [32,33]).

Though the technological requirements for freely-moving monkey models are more complex

than for head-fixed monkey models, studying natural behavior may require less training time

than reaching monkey models in which months can be spent teaching monkeys to learn tasks.

A comparison of the technologies used between different monkey models is presented in table

1.

In this report, we present a novel freely-moving monkey model, termed the treadmill

model. The treadmill monkey model uses the two key freely-moving monkey model

technologies, wireless neural recordings and computer vision based behavioral measurements,

to study the neural correlates of a monkey walking quadrupedally on a treadmill. This

experimental framework is important in its own right potentially as a useful animal model

for gait neurorehabilitation (e.g. [34]), as well as an important step towards designing even

more complex in-cage and in-the-wild monkey models, which require even more complex

and robust neural recording and behavioral tracking systems (see Discussion). We have

previously reported, preliminarily, that neural activity encodes walking and reaching [35,36].

Here, we substantially extend these previous preliminary reports by demonstrating results

in two rhesus monkeys (which is critical for knowing if the scientific results generalize across
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Table 1. Comparison of different electrophysiological monkey models.
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References

Head-fixed

Reaching X X – – X – [5–11]

Bipedal walking X ↓ – X – [18]

Freely-moving

Treadmill X ↓ ↑ X ↑ This work

In-cage X ↓↓ ↑↑ X X ↑↑ [19]

In-the-wild X ↓↓ ↑↑ X X ↑↑
†Dashes represent similar complexity to the baseline of traditional monkey models. A down

arrow represents lower complexity than the baseline. Double down arrows represent still

lower complexity. Up arrows represent an increase in complexity from baseline.

monkeys), analyze how neural activity covaries with changes in walking speeds, and analyze

population level activity so as to report the first comprehensive study of the treadmill monkey

model and associated scientific results. The kinematics of quadrupedal walking have been

characterized in monkeys (e.g. [37]), and the neural correlates of quadrupedal walking have

been studied in cat animal models [38–40], but, to our knowledge, this is the first time that

the neural correlates of quadrupedal walking has been studied in monkeys.

2. Methods

Walking behavior was recorded by eight video cameras while neural activity was telemetered

from chronically implanted electrode arrays. The recording environment consisted of a

commercially-available exercise treadmill surrounded on four sides by transparent plastic

walls held together in a custom-build extruded aluminum enclosure. The back wall was

removed when the monkey was walking into the treadmill environment and clipped back

in place during the experiments. The front wall had a hole to supply water and treats to

the monkey. The side walls and front wall were flush against the treadmill and there was

space in the back of the environment for the animal to step off the treadmill. The top of

the environment was open. A diagram of the recording environment is shown in figure 2(a),

pictures of the environment are shown in supplementary figure 1, and the recordings are
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described in detail below.

2.1. Behavioral task

All protocols were approved by the Stanford University Institutional Animal Care and Use

Committee. Two rhesus macaques (monkeys I and N) were trained, over a period of several

weeks, to walk naturally and quadrupedally on a treadmill moving at various normal walking

speeds. After initial training sessions in which each animal was introduced to the treadmill

environment, we began recording sessions in which the animal walked while video and neural

data were captured. Each recording session (one per day per monkey) lasted about 15

minutes. A session began by bringing a monkey to the treadmill environment using a pole

attached to the collar, a standard technique for safely assisting monkeys while moving in

a laboratory setting. For precautionary safety reasons, the pole remained loosely attached

during walking without disturbing behavior as no force was applied. Each session was divided

into 6 to 10 walking epochs in which the treadmill moved at a fixed speed, and the fixed

speeds were repeated and interleaved. During an epoch, the monkey walked unencumbered

on the treadmill and was free to exit off the rear end of the treadmill if desired. To encourage

continuous walking, the animal was rewarded continuously with water or fruit at the front

of the treadmill. Times within an epoch in which the animal exited the treadmill were not

analyzed. Between each walking epoch, the animal reached from the stationary treadmill to

food rewards at the front of the treadmill. We do not believe, and we had no observations

suggesting otherwise, that the water and food rewards had a significant effect on walking

behavior. A total of 40 (46) recording sessions were captured from monkey I (N) over the

course of 12.5 (8.5) months. During these sessions, the behavior of the monkeys was carefully

monitored to ensure animal safety, and there were no adverse events. These recording sessions

constitute a large dataset, on par with data sets collected from monkeys with chronically-

implanted arrays performing reaching tasks in “rig”.

For analysis, walking behavior was divided into individual steps. Each step began and

ended when the right arm (contralateral to implant) returned to the treadmill after swinging

forward through the air. To increase the consistency of behavior in analyses and to ensure a

high count of steps for individual speeds, we focused on a range of walking speeds in which

the animals took infrequent breaks. This range of walking speeds was divided into three

speeds categorized as slow, medium, and fast walking corresponding to 2.0, 3.0, and 4.0 kph

for monkey I (2.0, 2.5, and 3.0 kph for monkey N). Monkey I is larger than monkey N, so

it is natural for them to have a different set of comfortable walking speeds, and the key

point in this investigation is to have a slow, medium, and fast speed for each monkey. These

speeds need not be the same across monkeys as we are not making statements about neural

correlates of absolute speed.
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2.2. Video recordings

Walking behavior was recorded on video for offline analysis from eight camera views. Point

Grey Grasshopper (GRAS-20S4M/C) cameras captured video at 24.7 frames per second

at a resolution of 1624× 1224 pixels. Video acquisition and export were performed using a

4DViews 2DX Multi-Camera system. The 4DViews camera system ensured that images were

captured synchronously by all eight cameras via a synchronization line. The synchronization

line was also used to synchronize the neural recordings with the video recordings as shown

in black in figure 2(a) and described in the following section. Additionally, the intrinsic and

extrinsic parameters of the cameras were computed using a custom multi-camera calibration

method.

Behavioral measurements were gathered from video frames by using computer vision

techniques and by hand-tagging frames of interest. Computer vision techniques were used

to automatically find the 3D location of the right shoulder, elbow, and wrist as the monkey

walked. Unlike many neuroscience studies where markers attached to or painted on the

animal aid joint tracking (e.g., [18] and [9]), we did not include markers because they can

distract the animal. Instead, we developed a computer vision algorithm that is based on

statistical learning, epipolar geometry (the geometry of two camera views [41]), anatomical

constraints, and temporal coherence. Specifically, we trained view-dependent detectors of

these arm joints in each of the (2D) images (similar to how object detectors were trained

in [42]). Within each view, each arm joint (e.g., the elbow) was associated with multiple

such detectors–each corresponding to the arm joint in a different 3D pose. The per-pixel

detection response for an arm joint was defined to be the strongest per-pixel response among

all the detectors associated with the arm joint. The detection response for an arm joint for

all pixels defined a likelihood map for the 2D location of the arm joint in a given camera

view.

To estimate joint positions in a new unseen video sequence, we began by computing the

responses of the arm joint detectors. Note that in a given video frame, an arm joint may be

occluded in one view. However, our use of several cameras ensured it was always visible in

at least some of the views. Next, in order to suggest candidates for the 3D locations of the

arm joints, we looked for 3D locations whose projections onto the 2D images correspond to

strong responses of the 2D detectors across the different views. Importantly, by using epipolar

geometry, we were able to reduce the search space: we started from the 2D candidates in

the image taken from the most informative camera (side-view), and then, by restricting the

search along epipolar lines (given calibrated cameras), we only needed to search along 1D

lines in other views. This step results in a set of 3D candidates (weighted by the responses

of the detectors in all views) for each one of the arm joints (shoulder, elbow, and wrist).

Finally, using temporal coherence, the structure of the kinematic tree (e.g., the shoulder

location restricts the possible locations of the elbow), and anatomical constraints (obtained

via biometric measurements of the animal), we optimized, using dynamic programming, for

the full trajectory of the 3D locations of the arm joint across the entire video sequence.
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Performing inference in a batch process (over the full trajectory as opposed to frame by

frame) enabled us to reduce noise and to compensate for joint-detector errors.

In addition to automated behavioral tracking, a custom MATLAB (Mathworks, Natick,

MA) interface was written to hand-tag frames of interest in the video. For example, we

labeled the frames that marked the transitions between each step.

2.3. Neural recordings

In each monkey, a 96-channel multielectrode array (Blackrock Microsystems, Salt Lake City,

UT) was implanted in the dorsal aspect of the premotor cortex (PMd) as determined by visual

anatomical landmarks. Neural signals were telemetered using one of two recording platforms

for each recording session: the HermesD system or the HermesE system [22, 23]. HermesD,

used in 30 (40) recording sessions for monkey I (N), records 32 channels of broadband data at

12 bits per sample at 30 kSamples per second, and HermesE, used in 10 (6) recording sessions

for monkey I (N), records 96 channels of broadband data at 10 bits per sample at 31.25

kSamples per second. As shown in figure 2, the respective Hermes receiver demodulated the

transmitted neural data and output the result to a field programmable gate array (Spartan-

3A FPGA; Xilinx, San Jose, CA) located on a ZestET1 (Orange Tree Technologies Ltd,

Didcot, UK). The FPGA was programmed to check for wireless transmission errors, to

remove non-informative stuffing bits, and to package the useful data onto a User Datagram

Protocol (UDP) Ethernet stream to be stored for offline analysis. The FPGA also received

the video camera synchronization line as an input, included the image timing information in

the output UDP datastream, and output a specified pattern to synchronization LEDs that

could be seen in multiple camera views. By checking the patterns on the LEDs in multiple

camera views, we certified that the synchronization as measured by the hardware matched

the images saved by the video recordings.

Broadband neural data were then processed to identify and extract action potential

(spike) timing information for analyses. Raw broadband waveforms are plotted for 100 ms

in figure 3(a-b) for two channels in monkey N recorded with HermesD. LFP, not analyzed

in this study, was filtered out using a highpass filter with cutoff frequency of 250 Hz. Spike

times were designated anytime the filtered waveform crossed a threshold of −4.0 times the

RMS voltage value of the channel, similar to prior BMI research in our group and others

(e.g., [43]). Filtered waveforms for 3.0 seconds are shown in figure 3(c-d) for the same two

channels with the threshold for spikes marked in black. A raster plot of 10 seconds of walking

is plotted in figure 3(e).

2.4. Dataset selection

The environment used in the treadmill monkey model (i.e., a part of a traditional rhesus

monkey “housing room” with many other metal cages also in the room) contains more sources

of noise than the controlled rig environment of traditional monkey models (e.g., RF, light,
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and acoustically shielded rooms). In this treadmill environment, we contended with artifacts

in the neural data that arose from wireless transmission errors, grounding issues, thermal

sensitivities of the receiver, and interfacing issues between the Hermes systems and the neural

implant. Many of these issues were mitigated over the course of our year of recordings. We

chose to focus on the datasets with the fewest artifacts. Because of the time consuming

nature of hand-tagging video data, we selected a limited number of representative datasets

to analyze. For monkey I, we focused on 9 walking epochs from a single day (I20121024);

3 epochs were from each speed slow, medium, and fast, and neural recordings were made

using HermesE. For monkey N, we focused on 6 walking epochs from two consecutive days

(N20120821 and N20120822); each day had one slow, one medium, and one fast epoch, and

neural recordings were made using HermesD.

The results presented in this paper are taken from representative datasets from both

monkeys. While we focus on a subset of the recordings for the practical reasons mentioned

above, the results presented here are similar to recording sessions from many days. In

general, there is no guarantee that threshold crossings across many days will be stationary,

and therefore we chose to analyze a single day for monkey I and two consecutive days for

monkey N. A full analysis of the stability of waveforms is beyond the scope of this paper

and has been performed previously with the same type of multi-electrode arrays [43].

3. Results

3.1. Behavioral tracking using markerless computer vision

Figure 4(a-c) plots the right shoulder, elbow, and wrist in the vertical plane for 102 frames

as monkey I walks at a slow, medium, and fast pace. Because there was no “ground-

truth” measurement against which to compare to the computer vision results, we compared

the computer vision 3D positions to hand-labeled 3D locations for 100 points. We found

that the average Euclidean distances between the computer vision 3D data points and

the hand-labeled points were 26.1 mm, 20.6 mm, and 17.1 mm for the wrist, elbow, and

shoulder, respectively for monkey I. For reference, monkey I’s arm (shoulder to wrist) is

approximately 42 cm. Errors were anisotropic in 3D coordinates. For each joint, the error

in the horizontal direction perpendicular to the direction of movement was greater than the

errors in the vertical direction and in the walking direction. For instance, the root-mean-

square error between the hand-labeled points and computer vision points for the wrist were

9.6 mm in the direction of walking, 10.5 mm in the vertical direction, and 21.9 mm in the

horizontal direction perpendicular to the direction of movement. The poorer performance

of this direction is likely due to occlusion by the body. We measured the root-mean-square

error of the elbow joint angle in the vertical plane to be 4.7 degrees. For monkey N, the

automated tracking was less successful due to the animal’s smaller limbs, more motion blur,

and irregular walking patterns, and some points were hand-corrected to obtain more accurate

tracking. For this monkey, manual corrections were required for about one frame out of every
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50 frames. This represents a substantial improvement over manually determining all points.

No manual corrections were required for monkey I.

The frames that represent the beginning and end of each step are highlighted in figure

4(a-c). These plots represent 4.1 seconds of walking, during which monkey I takes about

three steps when walking at a slow speed, about four steps when walking at a medium speed,

and about five steps when walking a fast speed. To summarize the behavior over the analyzed

datasets, the cumulative distribution function (CDF) of step rates, the inverse of each step

duration, is plotted for monkey I in figure 4(d) and monkey N in figure 4(e). Monkey I has

a more consistent step rate as shown by a steeper slope in the CDF than monkey N.

3.2. Neural spiking in PMd encodes walking phase

A central aim of motor neuroscience is understanding which behaviors are encoded by neural

activity. In head-fixed monkey models, the standard approach has involved repeating the

identical behavior for many trials while recording neural activity. Consistent features in

neural recordings across trials are considered encodings of the behavior, and inconsistent

features are considered noise. In freely-moving monkey models, there is no trial structure to

exploit. However, we can classify behavioral epochs into categories (e.g. reaching or walking)

and ask if the neural activity during these epochs encodes the corresponding behaviors.

Neural activity encodes behavior if there are statistical differences in the neural activity

between two behavioral conditions.

In other words, we narrowly define “encoding” to indicate that the mutual information

between the neural activity and the categorical behaviors is greater than zero. The manner

in which information is encoded remains ambiguous. For example, motor cortex is heavily

connected to both somatosensory cortex and output motor areas (e.g., the spinal cord).

When we find that motor cortex encodes behavior with this method, we have not determined

whether we are measuring the encoding of the proprioceptive signals or the output motor

command (if a distinction can be made). Instead, we have determined that motor cortex

contains information that can differentiate between the behaviors, and thus, encodes the

behavior though we may not know how.

In the treadmill monkey model, we asked whether neural spiking in PMd encodes

the phase of quadrupedal walking. We divided continuous walking of each monkey’s

walking epoch (see Methods) into individual steps, which begin and end with the right arm

(contralateral to implant) coming into contact with the treadmill after it is swung forward.

A full step cycle is further divided into two epochs: the stance phase when the right arm

is in contact with the treadmill followed by the swing phase when the right arm swings

forward through the air. In figure 5, raster plots for threshold crossings are shown for 96

(32) channels for monkey I (N) while walking for 5 seconds at a medium (fast) speed. The

channels are arranged by the timing of the peak firing rate within the phase of walking.

The phase of walking is also marked below each raster plot with the stance phase in black

and the swing phase in white. In the raster plots it is clear that a periodicity exists in the
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threshold crossings that closely matches the periodicity in the phases of walking and that

different channels have different phase relationships with the phases of walking.

We further demonstrate the relationship between the periodicity of spiking and walking

by aligning neural spiking on an individual channel to individual steps. We have chosen multi-

electrode array technology to emphasize simultaneous recordings across many channels in

order to investigate population dynamics. One drawback of this technological choice is that

signal quality degrades over time, and we cannot always isolate single neurons. However,

we were able to isolate single neurons on a few channels, and they appear to have a simple

relationship with the phase of walking (see supplementary figure 2). This relationship tends

to be stable across days (see supplementary figure 3). In figure 6, raster plots and firing

rates are shown for a hand-sorted single-unit on a single electrode (channel) for each step

as monkey I and N walk at slow, medium, and fast speeds. Individual steps are aligned

at t = 0, which is when the right arm comes in contact with the treadmill after the swing

phase of walking. These single units appear to have the same relationship with the phase of

walking independent of speed.

Finally, we investigated to what extent PMd encodes the phase of walking. Because

many channels did not have single units that we could isolate, we chose to compare threshold

crossings so that we can study higher channel counts. Blurring information of multiple units

on a single electrode due to threshold crossing can only hurt our measurement of the extent to

which motor cortex is involved in walking. As a simple quantitative measure to determine if a

channel is tuned, we compare the square root (a standard transformation for making Poisson

processes more normal [44]) of the average firing rate of threshold crossings during the stance

phase and the swing phase (see supplementary figure 4). We exclude neural channels with an

average firing rate below 5 spikes per second in both phases of walking, with artifacts due to

an amplifier saturating, or that were disconnected due to interfacing issues. These channel

selection criteria reduced the number of channels from 96 (32) to 76 (20) for monkey I (N).

The fewer active channels in monkey N data is due to poorer signal quality of the electrode

array, which degraded more quickly over time than the signal quality of the array implanted

in monkey I. We found that 70/76 (11/20) channels are significantly tuned (p < 0.01, a

two-sample T-test) for monkey I (N). Thus, most channels in both monkeys encode the two

phases of the gait cycle during quadrupedal walking.

3.3. Average firing rate covaries with wrist velocity during step

In addition to showing that neural activity encodes certain behaviors, motor neuroscience

seeks to describe how neural activity covaries with behavioral kinematics. In both head-fixed

and freely moving monkey models, differences between similar movements, such as speed and

trajectory, are regressed against neural activity to investigate how neural activity changes

with changes in behavior. Using head-fixed reaching monkey models, it has been shown that

differences in reaching speeds for similar reach trajectories are associated with differences

in neural firing rates [45, 46], and we hypothesize that differences in walking speeds would
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likewise be associated with differences in firing rates.

One might ask whether neural activity covaries with the speed or position of the wrist

across all time points. This is equivalent to determining how well neural activity can predict

the position of wrist over time, a measurement made by Fitzsimmons and colleagues during

bipedal walking [18]. We, too, find that neural activity covaries well with wrist speed (data

not shown). However, this is equivalent to saying that the neural activity is tuned to walking

as we have shown in the previous section. If neural activity is tuned to the phase of walking

and if the wrist position and speed co-varies systematically over each movement, then neural

activity will covary with speed as well.

We tested to see if the average firing rate during individual steps is correlated

significantly with the peak forward wrist speed of the step. This requires a single-trial

analysis examining how well neural activity can account for trial-by-trial changes in wrist

speed. For each step, we calculated the peak forward speed of the wrist from the computer

vision measurements of walking behavior. Firing rates are calculated by convolving each

channel’s spike train with a Gaussian window with a standard deviation of 50 ms, and the

average firing rate over the step duration was measured. Channels excluded in the previous

section were again excluded. A total of 323 (173) steps are included for monkey I (N).

A linear regression was performed to determine whether there is a significant relationship

between the average firing rate and the peak forward speed of the wrist during walking.

Example channels from each monkey are plotted in figure 7(a,b). Of the 76 (20) channels

analyzed, 52 (7) were found to have significant slopes (p < 0.01) in the regression for monkey

I (N); channels were sorted by R2 value, and the R2 values are plotted in figure 7(c-d) with

slope values inset. Despite recording from PMd in both monkeys, in monkey I, most channels

exhibit an increase in average firing rate for steps that have faster swings, and in monkey N,

most channels exhibit a decrease in average firing rate for steps that have a faster swing. This

could be due to, among other reasons, slightly different placements of the electrode array with

respect to anatomical landmarks (i.e., intra-operative variation) or due to different function

localization in each monkey with respect to anatomical landmarks. Of the 52 (7) channels

that significantly covary with wrist speed, 48/52 (4/7) are also found to be encoded to the

different phases in walking in the previous section for monkey I (N). Thus, channels that

were found to significantly covary with peak wrist speed were likely to encode the phases of

walking.

3.4. Neural trajectories are rotational, evolve at step rate, and separate by speed

The previous two sections examine the relationship between multi-unit spiking on individual

channels and quadrupedal walking, but it is equally (if not potentially more) important

to understand how the entire population relates to movement (e.g., [47]). Recent work in

motor neuroscience has used dimensionality reduction techniques to view how neural activity

of the population evolves. The top two or three dimensions calculated from dimensionality

reduction can be plotted together, and the evolution of the neural population firing rates
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over time can be viewed as neural trajectories in this space (e.g., [44, 48]).

We performed factor analysis on multi-unit firing rates as monkey I walks at different

speeds. We could not perform this analysis on data from monkey N because there are not

enough active channels to build neural trajectories. A single step is plotted in figure 8(a)

with the stance phase of walking in bold followed by the swing phase of walking. Neural

trajectories for 10 steps at slow, medium, and fast speeds are plotted in red, blue, and

green in figure 8(b), respectively. The neural trajectories for steps at different speeds share

similar rotational trajectories though there are small systematic differences in trajectories

for different speeds. These small differences are likely caused by the number of channels

that covary with step velocity as shown in the previous section. A major difference between

the neural trajectories for different walking speeds is their angular frequency. The average

angular frequency of the neural trajectories is measured for the 10 steps for each walking

speed and plotted in figure 8(c). The average step rate (measured in steps per second) for

the 10 steps is plotted in figure 8(d). Converting units from radians per second to cycles per

second, it is apparent that the angular velocity of the neural trajectories occur at the same

rate as the step speed.

Though prominent features of the neural trajectories seem to be consistent across

walking speed, systematic differences may be embedded in the population neural trajectories.

Recently it has been suggested that a separation of rotational dynamics may exist as a

mechanism for neural populations to generate oscillatory output signals from input-specified

target frequencies [49]. We investigated whether there was a systematic offset in any direction

by searching for a direction, z, in state-space that best separates the population between

walking speeds.

There are a number of methods to separate two classes, including linear discriminant

analysis, logistic regression, and support vector machines. We found these methods work well

to separate the neural trajectories for slow and fast walking (data not shown). However, these

methods do not incorporate the neural trajectories for walking at medium speed. Therefore,

to find the separation direction z, we used least-squares to predict the walking speed from

each point in the trajectory for a single walking epoch (continuous walking for approximately

40 steps) at each speed. Indeed, the neural trajectories are well separated when projected

onto z, as shown in figure 8(e). This method outperformed two other previously described

class separation methods on cross validated data. The overall variance in this separation

direction is quite low; for example, 0.18% of the total neural variance for slow walking is

in the direction of z compared to 30.87% and 20.94% of the total neural variance is in the

direction of the first factor x1 and the second factor, respectively. The distribution of the

training dataset separated well on this axis figure 8(f, top), but the low variance could mean

that we are finding a separation in the noise. We then projected testing data composed of

the six remaining epochs not used to learn the direction z onto the learned direction z to

verify that the separation was real, figure 8(f, middle and bottom). Finally, we illustrate the

large separation of slow and fast speeds by showing a receiver operating characteristic plot,
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which shows how well we classify neural trajectories into the correct speeds as a function of

decision threshold (see figure 8(g)). The dotted curve represents the separation of slow and

fast walking for the training neural trajectories, and the two black curves for the test neural

trajectories. For the testing datasets, we can correctly separate more than 85% of the slow

and fast walking trajectories by a linear classifier. We find that, though neural trajectories

have largely similar features for different speeds, they have a small, but robust separation

along the direction z.

4. Discussion

4.1. PMd modulated during walking

Many textbooks describing the control of locomotion in mammals focus on the role of central

pattern generators in the spinal cord (e.g., [50]). The role of cortex is often described as being

used for skilled walking, such as walking over obstacles or on ladders (e.g., [51]). Studies

using decerebrate cat models have shown that unskilled walking need not have cortical

inputs to produce walking movements due to central pattern generators, but to the best

of our knowledge no studies have effectively demonstrated the existence of central pattern

generators in higher order primates with well developed corticospinal tracts [52]. Thus, we

feel that treadmill locomotion is not only a reasonably accessible behavior to study because

it is relatively stereotyped, but also a behavior that can lead to insights into motor function.

If corticospinal control is more important in these higher order primates, it is

unsurprising that in our data we found that most of the recorded channels in PMd encoded

the phase of walking. Here again, we point out the ambiguity of the encoding. The neural

signals in premotor cortex may arise from sensory regions, or they may be controlling the

locomotion, or both. Although this ambiguity is unresolved, it is clear that the information

about the phase of walking is present in threshold crossings in PMd.

On the other hand, if walking were truly controlled solely by the spinal cord, then it is

unclear what purpose this modulation within motor cortex serves. One possible explanation

comes from studies that have shown that successful skilled walking, such as walking on

ladders and responding to changing terrain, requires cortical input. This means that cortex

is required when changes to gait patterns are required. Therefore, modulation found within

motor cortex may represent tracking of the phase of walking such that appropriate corrective

movements can be instructed when intervention is required.

4.2. Implications for studies of voluntary movement

Scientific endeavors to understand how the brain controls voluntary movement have relied

on using animal models that narrowly focus on a handful of behaviors. However, the neural

responses to this limited set of behaviors is often complex and does not always follow simple,

interpretable relationships. The hope for freely-moving models is to be able to find consistent

relationships across many more sets of voluntary behaviors.



A freely-moving monkey treadmill model 14

Studying the control of voluntary movement in this manner requires a new strategy for

analyzing neural correlates. Instead of focusing on a repeated behavior for many trials, freely-

moving animal models require recording many behaviors over an extended period of time,

then using modern algorithms for large datasets to find consistent patterns within the data.

To be analyzed efficiently, new statistical and machine learning techniques are required to

study the neural correlates of behavior. One approach is to segment behavior into categorical

epochs (e.g., reaches upwards) where behavior is similar, and then to analyze those behavioral

epochs for common neural motifs (see supplementary figures 5 and 6). Conversely, we can use

machine learning techniques to look for patterns in neural data and analyze the behavioral

correlates of those patterns. Here, we present the types of data inquiries that can be used

in freely-moving animal models for the treadmill monkey model.

The treadmill monkey model has a number of advantages and disadvantages over in-

cage and in-the-wild monkey models. The benefit of the treadmill monkey model is that

similar behaviors (steps) are easy to collect in a short amount of time because the animal

walks continuously. This simplifies the data storage problem because only a limited time is

needed to collect sufficient behavior. In addition, computer vision for a task like walking

is much easier than for tasks in the cage and in the wild where occlusion from cameras

can make the computer vision task more difficult. For these reasons, we chose to limit the

scope of this initial study to walking. However, to realize the full potential of freely-moving

animal behavior, these systems need to be designed for and rigorously evaluated in multiple

behavioral contexts. Though the complexity of developing in-cage and in-the-wild monkey

models is higher, they have the benefit of lower complexity in gathering raw data. Data

acquisition requires little intervention once the neural recording and behavioral monitoring

systems are set up. The complexity is shifted from difficult recordings to difficult data

analysis. However, in-cage and in-the-wild monkey will produce richer data leading to new

insights in the control of voluntary movement.

4.3. Implications for BMIs

Given the inherent complexity of neural correlates of movements, it is difficult to determine

how the neural population will respond to novel behaviors. For computer cursor BMIs, the

space of novel behaviors is reduced because the cursor is confined to a 2D plane, and thus

reaching monkey models have provided perhaps a sufficient amount of data to train prosthetic

decoders – assuming that the person with paralysis is tetraplegic, and thus is approximately

as immobile as the head-fixed (and thus shoulder-constrained) monkey model. However,

to design decode algorithms for whole-arm BMIs capable of working with people who are

ambulatory and have a single-arm amputation, more knowledge about neural correlates of

complex reaches is needed. People who use whole-arm prosthetics will likely need to change

postures or move to new environments; the effect of which is unknown on neural correlates.

Freely-moving monkey models afford us the opportunity to study these factors.
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5. Conclusion

In this work, we have presented the design of a freely-moving monkey model. By using

telemetered neural recording technologies and markerless computer vision techniques, we

were able to study the neural correlates of quadrupedal walking for the first time. The

techniques presented here build a foundation for freely-moving monkey models that future

work can build on to study the neural correlates of many behaviors providing a comprehensive

look at how the brain controls voluntary movement.
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a b

Figure 1. Illustration of monkey models. (a) Traditional tethered monkey models

record neural activity from a direct, wired connection to the implant. The monkey’s

posture and gaze are often fixed. (b) Freely moving monkey models transmit neural activity

wirelessly enabling a larger range of naturals behaviors to be studied, such as interacting

with tools in different postures (left) and coordinating movements of the entire body (right).
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Figure 2. System overview of treadmill monkey model. (a) Unconstrained behavior

of a monkey is recorded synchronously with video cameras while broadband neural activity

is recorded and transmitted wirelessly. A camera server manages the synchronization of

eight cameras (black connection) and stores images (blue connection). An FGPA parses the

output of the Hermes (D or E) system, synchronizes the neural data with the video images,

and outputs patterns to LEDs to verify synchronization (green connection). Images of the

HermesE (b) transmitter and recording electronics, (c) receiving antenna, and (d) receiver

and FPGA.
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Figure 3. Neural recording Broadband neural data, sampled at 30 kilo-samples per

second, is recorded from PMd using HermesD as monkey I walks on a treadmill (I20121024).

(a-b) Two of the 32 channel waveforms are plotted. (c-d) LFP is filtered out of the signal,

and threshold crossings are found at 4 times the RMS (threshold marked by black horizontal

line). (c) A raster plot of these two channels during walking.
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Figure 4. Walking behavior Videos of the walking behavior were analyzed using

computer vision to determine locations of the monkey’s right shoulder, elbow, and wrist.

Panels (a), (b), and (c) plot the shoulder, elbow, and wrist in the vertical plane as monkey

I walks at slow, medium, and fast speeds (I20121024). Each trace represents the position of

the upper arm and lower arm in each frame. Successive traces are offset by 4 cm to separate

the arm position for each frame. Frames where the right wrist comes in contact with the

treadmill are highlighted; they represent the end of the swing phase and the beginning

of the stance phase. The cumulative distribution functions (CDF) of step rate for slow

(red), medium (blue), and fast (green) walking (measured from point of contact to the next

point of contact) are plotted in panels (d) for monkey I (I20121024) and (e) for monkey N

(N20120821 and N20120822). Monkey I walks at a more consistent rate for a given speed

than monkey N.
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Figure 5. Raster plot of walking with gait phase (a) Threshold crossings as monkey

I walks at 3.0 kph (medium speed) for 5 seconds. The phase of the gait are plotted below

the raster plots with the stance phase in black and the swing phase is grey. To sort the

channels, first we calculated the firing rate of each channel for each step (consisting of a

stance phase followed by a swing phase). Because each step has a different duration, we

normalized the step timing to its phase from 0 to 2π. Then we averaged the firing rate for

each channel across time-normalized steps. Finally, we found the phase where the maximum

average firing rate occurred and sorted channels by this value. (b) Threshold crossings as

monkey N walks at 3.0 kph (fast speed) for 5 seconds.
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Figure 6. Neural correlates of walking Raster plots of multi-unit activity on channel

21 as monkey I walks at (a) slow, (b) medium, and (c) fast speeds (I20121024). Each row

represents a step aligned at t = 0 to the right arm coming in contact with the treadmill

after stepping forwards. (d) Firing rate for each step is calculated by averaging over 50 ms

nonoverlapping bins. Raster plots for monkey N walking at (e) slow, (f) medium, and (g)

fast speeds and (h) the corresponding firing rate (N20120822).
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Figure 7. Average firing rate covaries with peak speed of step Peak firing rate

(spikes/sec) of a (a) channel 31 from HermesE for monkey I (I20121024) and (b) channel 21

from HermesD for monkey N (N20120821 and N20120822) versus maximum forward speed

(meters/sec) of the wrist per step with regression line. The distribution of R2 values for all

included channels (black bars are significant, p < 0.01) for (c) monkey I and (d) monkey

N with corresponding regression slopes inset. R2 value represents how much average firing

rate variance is explained by peak wrist speed variance.
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Figure 8. State-space view of neural population activity during walking State-

space view is computed for monkey I neural activity (I20121024) by using factor analysis. (a)

State-space view of neural population for a single step at medium speed for, stance phase

(bold) followed by swing phase. (b) State-space view of slow, medium, and fast walking

for 10 consecutive steps plotted in red, blue, and green, respectively. (c) Average angular

frequency in radians per second for 10 steps of slow, medium, and fast walking. (d) Average

step rate in steps per second for 10 steps of slow, medium, and fast walking. (e) Separation

along z dimension plotted versus projection into top factor of factor analysis. For clarity,

the medium walking speed has been omitted and the z-axis has been scaled by a factor of 6.

(f) Distribution of slow, medium, and fast walking in the direction of separation for training

data (top) and for testing data (middle and bottom). (g) ROC curves for separating slow

and fast walking (training dotted, testing solid).


