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Abstract— Neural control of movement is typically studied
in constrained environments where there is a reduced set of
possible behaviors. This constraint may unintentionally limit the
applicability of findings to the generalized case of unconstrained
behavior. We hypothesize that examining the unconstrained
state across multiple behavioral contexts will lead to new
insights into the neural control of movement and help advance
the design of neural prosthetic decode algorithms. However, to
pursue electrophysiological studies in such a manner requires
a more flexible framework for experimentation. We propose
that head-mounted neural recording systems with wireless data
transmission, combined with markerless computer-vision based
motion tracking, will enable new, less constrained experiments.
As a proof-of-concept, we recorded and wirelessly transmitted
broadband neural data from 32 electrodes in premotor cortex
while acquiring single-camera video of a rhesus macaque
walking on a treadmill. We demonstrate the ability to extract
behavioral kinematics using an automated computer vision
algorithm without use of markers and to predict kinematics
from the neural data. Together these advances suggest that a
new class of “freely moving monkey” experiments should be
possible and should help broaden our understanding of the
neural control of movement.

I. INTRODUCTION

An important long-term goal of neuroscientific studies is
to understand the neural control of unconstrained behavior.
The analysis of such movement contrasts with previous work
in which movement is narrowly constrained, the context is
controlled, and the behavior is repetitive and highly trained.
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The hypothesis underlying this work is that the variability
and complexity of “natural” movements may reveal new
insights into the neural control of movement. The present
study represents a first step towards this goal by using a
head-mounted neural recording system with wireless data
transmission and computer vision to analyze the walking
motion of a non-human primate. It expands on previously
reported studies that have explored the relationship between
cortical neural activity and gait by allowing for untethered
multichannel recording [1] and by allowing for unconstrained
quadrupedal movement with no head or neck fixation [2]. In
this way the present study helps move further toward the goal
of establishing an animal model of freely moving humans,
which is important for the advancement of basic systems
neuroscience as well as neural prostheses [3], [4].

The analysis of natural movement in primates requires:
1) a mechanism to record neural population activity from a
freely moving animal, 2) a method for recording behavior
that does not encumber nor alter the movement, 3) a repre-
sentation of the movement suitable for analysis, 4) a task that
exhibits significant variability yet is sufficiently repeatable
to facilitate analysis, and 5) a method for analyzing high
dimensional neural and behavioral signals that gives insight
into the neural coding of movement.

The system described here, and outlined in Fig. 1, uses
a device for recording the simultaneous activity on multiple
channels of a microelectrode array implanted chronically in
the dorsal aspect of premotor cortex (PMd) in one rhesus
monkey. The head-mounted device wirelessly transmits the
neural activity to a host computer, freeing the animal to
move without the constraints of standard recording methods,
which use wire cables. We record the full-body motion of the
animal using a video camera. Unlike previous work which
has relied on placing reflective markers on the body [5], we
describe a markerless system that simplifies the experimental
setup. Our task requires the monkey to walk quadrupedally
on a treadmill (see Fig. 1a). The speed of the motion can be
varied and the monkey is allowed to move backwards and
forwards, changing his location on the treadmill. The monkey
is also free to rotate his head and vary his gait as desired. We
then extract behavioral parameters using a computer vision
method that segments the monkey from the background
and models the behavior using a time-varying image-based
signature. The behavioral measure is obtained by projecting
an image patch onto a low dimensional subspace obtained
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Fig. 1. System overview. (a) The motion of a monkey is passively observed with a video camera while neural activity is recorded and transmitted
wirelessly. (b) An example electrode’s filtered broadband signal obtained wirelessly from the HermesD recording system and filtered to remove the local
field potential. (c) Video images are captured from a side view in order to extract information about posture.

using principal component analysis (PCA). Finally, we define
a linear decoding model and show how it relates to behavior.

II. WIRELESS NEURAL RECORDING

A. Behavioral Task and Neural Recordings

All protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. We trained
an adult male rhesus macaque to walk on a treadmill at
speeds ranging from 2.0 kph to 3.5 kph. Each session
lasted approximately 20 minutes and was divided into blocks
where the monkey walked continuously for up to 5 minutes
before a break. For this study, we selected and analyzed
one day’s session where the monkey walked at a constant
speed of 3 kph for 5 blocks, each about 2 minutes in length.
Synchronization between the neural and video data streams
was typically accurate to within +/- 500 ms; each data stream
had a precise, independent clock of its own. The neural data
was aligned to maximize the linear fit to the behavioral data,
thereby correcting for any clock synchronization offset, as
well as identifying the optimal lag between kinematics and
neural activity. Broadband neural activity on 32 electrodes
was sampled at 30 kSamples/s and transmitted wirelessly
using the HermesD system [6]. An OrangeTree ZestET1 was
programmed to package the HermesD output datastream into
a UDP Ethernet packet stream, which was saved to disk.

B. Neural Data Analysis

Each channel of neural recordings was filtered with a
zero-phase highpass filter to remove the local field potential
(LFP), since LFP is not the focus of the present study. We
then determined the times of spikes on each channel using a
threshold. Points where the signal dropped below -3.0× the
RMS value of the channel were spike candidates. Occasional
artifacts (likely due to static discharge) were automatically
rejected from the candidate spike set based on the shape and
magnitude of the signal near the threshold crossing point.

Firing rates of each channel were obtained by convolving the
spike trains with a Gaussian filter (30 ms standard deviation).
Finally, those firing rates were binned every 42 ms to match
the frame rate of the video.

III. MOVEMENT ANALYSIS

A. Hand-Tagged Gait

Video image sequences were manually tagged at a specific
moment in the gait cycle to estimate the ground truth walking
movement. Tags marked frames where the contralateral arm
(left PMd was implanted and right arm analyzed) was
maximally retracted. The tags were then fit with a sinusoidal
waveform with peaks corresponding to the hand-tagged time.
The phase of the arm between consecutive hand tags was
assumed to precess at a constant rate (i.e., linear phase).

B. Image Analysis

Video was captured at 24 fps at a resolution of 1624×1224
pixels using a Point Grey Grasshopper GRAS-20S4M/C
camera. Data acquisition was performed using a 4DViews
2DX Multi-Camera system.

The goal of the image analysis was to extract a behavioral
descriptor that was correlated with the recorded neural data.
In each frame, we first segmented the monkey from the
background by employing a pairwise Markov random field
approach [7]. The optimal segmentation was computed by
graph cuts [8]–[10] using GCMex [11]. The segmentation
in turn defined a contour that marked the outline of the
animal as shown in Fig. 2a. Forearms and hands were
not included in the contour because they did not contrast
well with the black tread of the treadmill. Next, among
the points along the front of the animal, we automatically
determined a contour point whose y-value was predefined
to match the upper-arm region. This was defined to be the
point of reference in the current frame. We further defined
a small image patch adjacent to the reference point to be
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Fig. 2. Image processing. (a) Image segmentation of a video frame.
Pixels interior to the outline were defined to be part of the animal and
pixels exterior to the outline are deemed part of the background. The box
represents the ROI. (b) Behavioral signal: coefficient of the first PC over
time. Peak arrow indicates time of maximal retraction (typical ROI shown
in panel c) of the contralateral arm. Trough arrow indicates time of maximal
protraction (typical ROI shown in panel d).

our region of interest (ROI), illustrated by the box in Fig.
2a, 2c, and 2d. Effectively, this procedure yielded a tracker
whose output was a small rectangular frame that is “locked”
to the upper arms. The resulting image patch was invariant
to translation; it captured the essence of the arm movements
without including nominally irrelevant information such as
the absolute position of the animal on the treadmill. The
size of the ROI color image was 25 by 31 pixels, a 2325-
dimensional vector. Finally, to obtain a behavioral descriptor
of the motion, we performed dimensionality reduction on
the ROI image using PCA. We focused our attention on the
first principal component (PC) plotted in Fig. 2b. The first
PC captured much of the behavioral activity: it was roughly
periodic with peaks corresponding to times of maximal
contralateral retraction (Fig. 2c) and troughs corresponding
to times of maximal contralateral protraction (Fig. 2d) as
depicted by the arrows Fig. 2b.

IV. DATA AND RESULTS

A. Decoding Hand-Tagged Kinematics
The hand-tagged data provided an approximation of the

behavioral data. We linearly regressed the hand-tagged signal
against neural firing rates. We made no assumption of the
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Fig. 3. Decode of hand-tagged signal. (a) Plot of RMS error versus lag
for block 4, zero represents initial synchronization. (b) Sinusoidal signal
plotted in blue with decoded signal in red.
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Fig. 4. Decode of ROI’s first PC scores. (a) Plot of RMS error of decoder
versus lag for block 4. (b) First PC scores plotted in blue with decode in
red.

timing between the two signals. Instead, we fit the sinusoidal
waveform at many different lag values and compared RMS
values at each point. These fits of the hand-tag waveform
were done with a 33-parameter linear fit (effectively, a linear
filter as in [12] with only one time bin), one parameter per
channel plus a constant offset. The results are shown in Fig.
3a, demonstrating an optimal lag for minimizing RMS error.

To gain an understanding of how well the neural data
predicts the hand-tagged measure of gait, we performed a
10-fold cross validation of the neural fit for two blocks,
employing this optimal lag value. A sample decode is shown
in Fig. 3b, and the resulting R2 value was 0.83 for this fit.
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B. Decoding ROI Image PC Scores
With the hand-tagged decode results as a baseline, we next

explored decoding the first PC scores. As in the processing of
the hand-tagged data, no assumptions were made regarding
the alignment of the video and neural data. Minimizing the
RMS error once again yielded the optimal lag (Fig. 4a).
Similarly, neural decodes of the first PC scores were made
using 10-fold cross validation for 5 blocks using the optimal
lag. The R2 value for this analysis was 0.72. A sample
decode is shown in Fig. 4b.

V. DISCUSSION AND CONCLUSIONS

A. Neural Activity Predicts Walking Kinematics
We have shown that neural data recorded from the arm

region of PMd can predict contralateral arm kinematics
associated with walking on a treadmill. By sweeping the
alignment between the neural and video data, an optimal
latency between them was found. A dip in the RMS error is
observable in both hand-tagged and PC decoding around the
value of optimal latency. These decreases in RMS arise from
variance in the stride length consistent in both the behavioral
data and the neural firing rate data. The characteristic dip in
the dataset confirms that we are aligning our data at the
correct location and that the neural data correlates well with
stride timings. Furthermore, we were able to employ a simple
linear fit and use 32 channel neural data to predict the phase
of the arm movement reasonably well (R2 = 0.83). Future
experiments would be needed to compare quantitatively
decode performance on this task with decode performance
in traditional, more constrained settings (e.g., [12]).

B. Markerless Extraction of Relevant Behavior
This study demonstrated two methods for extracting be-

havior that were relevant to the experimental task without
using markers to obtain physiological measurements. The
first method was hand-tagging the video and the second was
an automated method for processing the frames. Importantly,
this study showed a proof-of-concept for automatically ex-
tracting key features of movement that are encoded in the
firing rates of neurons. Thus, we were able to avoid the task
of hand labeling.

C. Future Work
In the present study, hand-tagged images provided a rel-

atively good ground truth for interpolating the phase of the
gait. However, hand-tagging is not feasible for more complex
studies of natural behavior for a number of reasons: 1) hand-
tagging cannot provide a complete representation of posture,
2) it is often somewhat qualitative and subject to user error,
and 3) it does not scale to large datasets.

Synchronization between neural data and video data was
achieved by minimizing RMS error. Future work should
precisely synchronize neural recording with video data at
time of data collection to eliminate alignment ambiguity.

It is promising that a relatively simple model for extracting
behavioral measurements performed comparably to hand-
tagging (R2 of 0.73 vs. R2 of 0.83). Future work should

incorporate additional camera angles of the same space
allowing for better models of behavior and, as a result, more
precise estimation of kinematics. Detailed models that enable
precise measurements of behavior will likely outperform
hand-tagging methods and enable a new class of experiments
focused on unconstrained movement.
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