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Abstract

While research on articulated human motion and pose estimhas progressed rapidly in the last few years,
there has been no systematic quantitative evaluation opeting methods to establish the current state of the art.
We present data obtained using a hardware system that iscabdgpture synchronized video and ground-truth 3D
motion. The resulting HMANEVA datasets contain multiple subjects performing a set ofgdieeld actions with
a number of repetitions. On the order 4§, 000 frames of synchronized motion capture and multi-view video
(resulting in over one quarter million image frames in tptaére collected a60 Hz with an additionaB7, 000 time
instants of pure motion capture data. A standard set of eneasures is defined for evaluating both 2D and 3D
pose estimation and tracking algorithms. We also descrlmsaline algorithm for 3D articulated tracking that uses
a relatively standard Bayesian framework with optimizatio the form of Sequential Importance Resampling and
Annealed Particle Filtering. In the context of this baseligorithm we explore a variety of likelihood functionsigor
models of human motion and the effects of algorithm parareet®ur experiments suggest that image observation
models and motion priors play important roles in perfornearend that in a multi-view laboratory environment,
where initialization is available, Bayesian filtering tenw perform well. The datasets and the software are made
available to the research community. This infrastructuitesupport the development of new articulated motion and
pose estimation algorithms, will provide a baseline forehaluation and comparison of new methods, and will help
establish the current state of the art in human pose estimatid tracking.

1 Introduction

The recovery of articulated human motion and pose from viteeobeen studied extensively in the psyears
with the earliest work dating to the early 1980’s [28, 53]. @riety of statistical [1, 2, 7, 17, 30, 74, 75, 76] as well
as deterministic methods [46, 83, 69] have been developeuatking people from single [1, 2, 21, 30, 36, 45, 46,
58, 59, 60, 63, 75] or multiple [7, 17, 26, 74] views. All thasethods make different choices regarding the state
space representation of the human body and the image obieas/eequired to infer this state from the image data.
Despite clear advances in the field, evaluation of these adstremains mostly heuristic and qualitative. As a result,

*The first two authors contributed equally to this work.
TThe work was conducted at Brown University.



it is difficult to evaluate the current state of the art wittyaertainty or even to compare different methods with any
rigor.

Quantitative evaluation of human pose estimation and ingcis currently limited due to the lack of common
datasets containing “ground truth” with which to test anthpare algorithms. Instead qualitative tests are still yide
used and evaluation often relies on visual inspection efitesThis is usually achieved by projecting the estimated 3
body pose into the image (or set of images) and visually asmpsow the estimates explain the image [17, 21, 60].
Another form of inspection involves applying the estimatadtion to a virtual character to see if the movements
appear natural [76]. The lack of the quantitative experitagon at least in part can be attributed to the difficulty of
obtaining 3D ground-truth data that specify the true pogh®body observed in video sequences.

To obtain some form of ground truth, previous approache® hiagorted to custom action-specific schemes;
e.g.motion of the arm along a circular path of known diameter [3A]Jternatively, synthetic data have been ex-
tensively used [1, 2, 26, 69, 76] for quantitative evaluatigvith packages such aBER (e frontier, Scotts Valley,
CA) or MAYA (AutodeskSan Rafael, CA), semi-realistic images of humans can kaerexd and used for evaluation.
Such images, however, typically lack realistic cameraeyamften contain very simple backgrounds and provide sim-
plified types of clothing. While synthetic data allow quaative evaluation, current datasets are still too simiplist
capture the complexities of natural images of people andesce

In the last few years, there have been a few successful akdgfy 35, 47, 65] to simultaneously capture video
and ground truth 3D motion data (in the form of marker-basacking); some groups were also able to capture 2D
motion ground truth data in a similar fashion [89]. Typigdilardware systems similar to the one proposed here have
been employed [35] where the video and motion capture date eaptured either independently (and synchronized
in software off-line) or with hardware synchronization. Wéhhis allowed some quantitative analysis of results [23,
35, 47, 65, 89], to our knowledge none of the synchronized daptured by these groups (with the exception of [89],
discussed in Section 2) has been made available to the coitynatitarge, making it hard for competing approaches
to compare performance directly. For 2D human pose/mostmation, quantitative evaluation is more common and
typically uses hand-labeled data [30, 58, 59]. Furthermforeboth 2D and 3D methods, no standard error measures
exist and results are reported in a variety of ways which gmedirect comparisore.g.average root-mean-squared
(RMS) angular error [1, 2, 76], normalized error in joint &8[69], silhouette overlap [58, 59], joint center distanc
[7, 26, 36, 39, 41, 74, 75gtc.

Here we describe two datasets containing human activity agsociated ground truth that can be used for quanti-
tative evaluation and comparison of both 2D and 3D methodshuye that the creation of these datasets, which we
call HUMAN EvA, will advance the state of the art in human motion and posmatbn by providing a structured,
comprehensive, development dataset with support code wanttitptive evaluation measures. The motivation behind
the design of the HMAN EVA datasets is that, as a research community, we need to armwetlowing questions:

What is the state-of-the art in human pose estimation?

What is the state-of-the art in human motion tracking?

What algorithm design decisions affect human pose estimatnd tracking performance and to what extent?

e What are the strengths and weaknesses of different poseagistn and tracking algorithms?
e What are the main unsolved problems in human pose estimatiotracking?

In answering these questions, comparisons must be madssaeneariety of different methods and models to find
which choices are most important for a practical and robakition. To support this analysis, theusAN EvA
datasets contain a number of subjects performing repesitiials) of a varied set of predefined actions. The dagaset
are broken into training, validation, and test sub-sets.tlf@testing subset, the ground truth data are withheld and a
web-based evaluation system is provided. A set of error nreass defined and made available as part of the dataset.
These error measures are general enough to be applicablestocorrent pose estimation and tracking algorithms
and body models. Support software for manipulating the dathevaluating results is also made available as part
of the HUMANEVA datasets. This support code shows how the data and errourasasin be used and provides an
easy-to-use MatlabThe MathworksNatick, MA) interface to the data. This allows different tmeds to be fairly
compared using the same data and the same error measures.



In addition we provide a baseline algorithm for 3D articathtracking in the form of simple Bayesian filtering.
We analyze the performance of the baseline algorithm underiaty of parameter choices and show how these
parameters affect the performance. The reported resuttseodUMAN EVA - 11 dataset are intended to be the baseline
against which future algorithms that use the dataset carobmpared. In addition, this Bayesian filtering software
is freely available, and can serve as a foundation for newrdlgn development and experimentation with image
likelihood models and new prior models of human motion.

In systematically addressing the problems of articulatetidin pose estimation and tracking using thevAN -

EvA datasets, other related research areas may benefit asweéllas foreground/background segmentation, appear-
ance modeling and voxel carving. It is worth noting that saméfforts have been made in related areas including the
development of datasets for face detection [55, 56], hunadtnidentification [27, 67], dense stereo vision [68] and
optical flow [4]. These efforts have helped advance the sththe-art in their respective fields. Our hope is that the
HuUMAN Eva datasets will lead to similar advances in articulated hup@s® and motion estimation. In the short time
that the dataset has been made available to the researchuritynit has already helped with the development and
evaluation of new approaches for articulated motion edtong8, 9, 38, 40, 41, 50, 62, 84, 88, 91]. The dataset has
also served as a basis for a series of workshops on Evalusitidaman Motion and Pose Estimation (EHuMet
forth by the authors.

2 Related work

Articulated Pose and Motion Estimation. Classically the solutions to articulated human motiomesation fall into

two categories: pose estimation and trackiRgse estimatiois usually formulated as the inference of the articulated
human pose from a single image (or in a multi-view settingrfimultiple images captured at the same tinfejcking

on the other hand, is formulated as inference of the humas @eer a set of consecutive image frames throughout an
image sequence. Tracking approaches often assume knawédge initial pose of the body in the first frame and
focus on the evolution of this pose over time. These appmscan be combined [74, 76], such that tracking benefits
from automatic initialization and failure recovery in tharin of static pose estimation and pose estimation benefits
from temporal coherence constraints.

It is important to note that both tracking and pose estinmat@n be performed in 2D, 2.5D, or 3D, corresponding
to different ways of modeling the human body. In each case,bibdy is typically represented by an articulated
set of parts corresponding naturally to body parts (limlesdh hands, feegtc). Here 2D refers to models of the
body that are defined directly in the image plane while 2.5praaches also allow the model to have relative depth
information. Finally 3D approaches typically model the lambody using simplified 3-dimensional parts such as
cylinders or superquadrics. A short summary of differengrapches with evaluation and error measures employed
(when appropriate) can be seen in Table 1; for a more comjaled@momy, particularly of older work, we refer readers
to [24] and [44].

Common Datasets. While HUMANEVA is the most extensive dataset for evaluation of human poderation
estimation, there have been several related efforts. Aaimpproach was employed by Waetal.[89] where syn-
chronized motion capture and monocular video was colledibd dataset, used by the authors to analyze performance
of 2D articulated tracking algorithms, is available to thebfic®. The dataset, however, only contaihsequences2(

of which come from old movie footage and required manualllaE only 2D ground truth marker positions are
provided. The INRIA Perception Group also employed a simalgproach for collection of ground truth data [35],
however, only the multi-view video data is currently madeikable to the public.

The CMU Graphics Lab Motion Capture Database [15] is by farrtiost extensive dataset of publicly available
motion capture data. It has been used by many researchérig Wit community to build prior models of human
motion. The dataset, however, is not well suited for evahgatideo-based tracking performance. While, for many
of the motion capture sequences, low-resolution monosidios are available, the calibration information reqdiire

1while the workshops did not have any printed proceedindgsmnissions can be viewed on-line:
http://www.cs.brown.edu/people/ls/ehum/
http://lwww.cs.brown.edu/people/ls/lehum?2/
Shttp://www.cc.gt.atl.ga.us/grads/w/Ping.Wang/Projec t/FigureTracking.html



Table 1: Short survey of the human motion and tracking allgors. Methods are listed in the chronological order
by the first author. Typerefers to the type of the approach, where (P) correspondset@ase-estimation and (T)
to tracking. Approaches that employ)(and ¢x) evaluation measures are consistent with the evaluatiasures
proposed in this paper.

Year  First Author [ Model Type Parts  Dim] Type | Evaluation Measure
1983  Hogg [28] Cylinders 14 25 T Qualitative

1996  Ju[33] Patches 2 2 T Qualitative

1996  Kakadiaris [34] D Silhouettes 2 3 T Quantitative

1998  Bregler [11] Ellipsoids 10 3 T Qualitative*

2000  Rosales [64] Stick-Figure 10 3 P Synthetic %2
2000  Sidenbladh [73] Cylinders 2/10 3 T Qualitative

2002  Ronfard [63] Patches 15 2 P Hand Labeled

2002  Sidenbladh [71] Cylinders 2/10 3 T Qualitative

2003  Grauman [26] Mesh N/A 3 P Synthetic/®SER  *
2003 Ramanan [59] Rectangles 10 2 TP Hand Labeled 0
2003  Shakhnarovich [69] Mesh N/A 3 P Synthetic/®SER
2003  Sminchisescu [78, 79] Superquadric Ellip. 15 3 T Qualitativée

2004  Agarwal [1, 2] Mesh N/A 3 P Synthetic/®SER T
2004  Deutscher [17] R-Elliptical Cones 15 3 T Qualitative

2004 Lan[37] Rectangles 10 2 TP Qualitative

2004  Mori [46] Stick-Figure 9 3 P Qualitative

2004  Roberts [61] Prob. Template 10 2 P Qualitative

2004  Sigal [74] R-Elliptical Cones 10 3 TP Motion Capture *k
2005 Balan[7] R-Elliptical Cones 10 3 T Motion Capture *k
2005  Felzenszwalb [21] Rectangles 10 2 P Qualitative

2005 Hua[30] Quadrangular 10 2 P Hand Labeled b
2005 Lan|[36] Rectangles 10 2 P Motion Capture  *
2005 Ramanan [58] Rectangles 10 2 TP Hand Labeled o0
2005 Ren[60] Stick-Figure 9 2 P Qualitative

2005  Sminchisescu [76] Mesh N/A 3 TP Synthetic/®SER
2006  Gall[23] Mesh N/A 3 T Motion Capture T
2006 Lee[39] R-Elliptical Cones 5/10 3 TP Hand Labeled *xd
2006  Li[41] R-Elliptical Cones 10 3 T HUMAN EvA **
2006  Rosenhahn [65] Free-form surface patches N/A 3 T Motion Capture T
2006  Sigal [75] Quadrangular 10 2 P Motion Capture *
2006  Urtasun [85] Stick-figure 15 3 T Qualitative

2006  Wang [89] SPM + templates 10 2 T Motion Capture  x ando
2007 Lee([38] Joint centers N/A 3 T HUMAN EvA *%
2007  Mundermann [47] SCAPE 15 3 T Motion Capture ~ x* ando
2007  Navaratnam [48] Mesh N/A 3 P Motion Capture

2007  Srinivasan [82] Exemplars 6 2 P Hand Labeled * ando
2007  Xu[91] Cylinders 10 3 T HUMAN EVA *x
2008 Bo[9] Joint centers N/A 3 P HUMAN EVA *k
2008  Ning [50] Stick-figure 10 3 P HUMAN EvA T
2008  Rogez [62] Joint centers 10 2/3 P HUMAN EvA *
2008  Urtasun [84] Joint centers N/A 3 P HUMAN EVA *k
2008  Vondrak [88] Ellipsoids + prisms 13 3 T HUMAN EVA *k

* - Mean squared distance in 2D between the se¥bf= 15 (or fewer) virtual markers corresponding to the joint
centers and limb ends. Measured in pixgl)
D(x,%) = 4 SM N ma(x) — mi(%) ||, wherem; (x) € R? is the location of 2D marker with respect to posg.
** - Mean squared distance in 3D between the sevbf= 15 virtual markers corresponding to the joint
centers and limb ends. Measured in millimetersrj.

D(x,%) = 4 M| ma(x) — mi(%) ||, wherem; (x) € R is the location of 3D marker with respect to pose.
1 - Root mean square (RMS) error in joint angle. Measured imetegtieg.
D(9,0) = & SN [(8; — 8;)mod £ 180°|, whered € R™ is the pose in terms of joint angles.
1 - Normalized error in joint angle. Measured as a fractiomfto 1.
D(9,0) =N 1 - cos(8; — 8;), whereg € R is the pose in terms of joint angles.
o/ © o - Pixel overlap / Pixel overlap based threshold resultingiimary 0/1 detection measure.
f - Mean distance from 4 endpoints of quadrangular shapegeptiag the limb.

2 Error units were in fractions of the subject’s height.

3 While only qualitative analysis of the overall tracking feemance was presented, a quantitative analysis of the euafltocal minima
in the posterior was performed.

4 Additional per-limb weighting was applied to downweigheterror proportionally with the size of the limb.



Table 2: Comparison of HIMAN EVA to other datasets available and employed by the community.

HUMAN EvA Wanget al. INRIA Perception [35]| CMU MoCap CMU MoBo
Datasets [89] Multi-Cam Dataset Dataset [15] Dataset [27]
# of Subjects 4 3 Unknown > 100 25
# of Frames = 80, 000 ~ 450 Unknown Unknown ~ 200, 000
# of Sequences 56 4 13 2,605 100
Video Data
# of Cameras a/7 1 8/34 1 6
Calib. Available Yes No Yes No Yes
Dataset Content
Motion Walk Walk Dance Many Walk
Jog Dance Exercise
Throw/Catch | Jumping Jacks
Gesture
Box
Combo
Appearance Natural Natural / Natural / MoCap Suit Natural
MoCap Suit MoCap Suit
Ground Truth
Content 3D 2D None 3D 2D
Source MoCap MoCap / None MoCap Manual Label [92]
Manual Label

to project the 3D models into the images is not. Neverthelbssvideo data has proved useful for the analysis of
discriminative methods that do not estimate 3D body locetig.[48]. In addition, the subjects are dressed in tight
fitting motion capture suits and hence lack the realistithifg variations exhibited in less controlled environnsent

The CMU Motion of Body (MoBo) Database [27], initially dewgded for gait analysis, has also proved useful in
analyzing the performance of articulated tracking aldponis [20, 92]. While the initial dataset, which contains an
extensive collection of walking motions, did not contaiimjalevel ground truth information, manually labeled data
has been made availaBley Zhanget al.

A more direct comparison of BMAN EVA to other datasets that are available to the community is\givé@able 2.

3 HuUMANEVA Datasets

To simultaneously capture video and motion information,subjects wore natural clothing (as opposed to tight-
fitting motion capture suits typically used for pure moti@pture sessions [15]) on which reflective markers were
attached using invisible adhesive tap@ur motivation was to obtain “natural” looking image datatthontained all
the complexity posed by moving clothing. One negative oute®f this is that the markers tend to move more than
they would with a tight-fitting motion capture suit. As a rlisaur ground truth motion capture data may not always
be as accurate as that obtained by more traditional metheei$elt that the trade-off of accuracy for realism here
was acceptable. We have applied minimal post-processitigetmotion capture data, steering away from the use of
complex software packages.¢.Motion Builder) that may introduce biases or alter the motiata in the process.
As a result, motion capture data for some frames in some segaare missing markers or are inaccurate. We made
an effort to detect such cases and exclude them from the itatauet comparison. Note that the presence of markers
on the body may also alter thatural appearance of the body. Given that the marker locationsrevevik, it would

Shttp://www.cs.cmu.edu/ ~zhangjy/

"Participation in the collection process was voluntary aachesubject was required to read, understand, and sign @ntinsal Review Board
(IRB) approved consent form for collection and distribatiof data. A copy of the consent form for the “Video and Motioap@ire Project”
is available by writing to the authors. Subjects were infednthat the data, including video images, would be madeahlailto the research
community and could appear in scientific publications.



be possible to provide a pixel mask in each image coveringiider locations; these pixels could then be excluded
from further analysis. We felt this was unnecessary sineentarkers are often barely noticeable at video resolution
and hence will likely have an insignificant impact on the parfance of image-based tracking algorithms.

We have developed two datasets that we calMANEvA-I and HUMANEVA-Il. HUMANEVA-I was captured
earlier and is the larger of the two setsuian EVA-Il was captured using a more sophisticated hardware sytstaim
allowed better quality motion capture data and hardwaretsymization. The differences between these two datasets
are outlined in the Figure 1.

Since all the data was captured in a laboratory setting, ¢éhj@ences do not contain any external occlusions or
significant clutter, but do exhibit the challenges imposgdstiong illumination (e.g. strong shadows that tend to
confuse background subtraction); grayscale cameras nsbd HUMAN EVA -1 dataset present additional challenges
when it comes to background subtraction and image feattnesn at 60 Hz the images still exhibit a fair amount of
motion blur.

The split of the training and test data was specifically desibto emphasize the ability of the pose and motion
estimation approaches to generalize to novel subjects antserved motions. To this end, one subject and one
motion for all subjects were withheld from the training aradidation dataset for which ground truth is given out. We
believe the proposed datasets exhibit a moderately conapléwaried set of motions under realistic indoor imaging
conditions that are applicable to most pose and motion asiimtechniques proposed to date.

3.1 HumanEva-I

HUMAN EVA-1 contains data from subjects performing a set 6fpredefined actions in three repetitions (twice
with video and motion capture, and once with motion captloeey. A short description of the actions is provided in
Figure 1. Example images of a subject walking are shown inr€i@ where data frorfi synchronized video cameras
is illustrated with an overlay of ground truth body pose.

3.1.1 Hardware

Ground truth motion of the body was captured using a comrmakmbdtion capture (MoCap) system from Vicon-
Peak. The system uses reflective markers and six 1M-pixel canerescover the 3D position of the markers and
thereby estimate the 3D articulated pose of the body.

Video data was captured using two commercial video capistemss. One from Spica Technology Corporation
and one from IO Industrié® The Spica system captured video using four PuldifM6710 grayscale cameras
(grayscale, progressive scan, 644x488 resolution, fratgeaf up to 120 Hz). The 10 Industries system used three
UniQ 2 UC685CL 10-bit color cameras with 659x494 resolution anchank rate of up to 110 Hz. The raw frames
were re-scaled from 659x494 to 640x480 by 10 Industriesnsare. To achieve better image quality under natural
indoor lighting conditions both video systems were set ugapture at 60 Hz. The rough relative placement of
cameras is illustrated in Figure 1 (left).

The motion capture system and video capture systems wesynohronized in hardware, and hence a software
synchronization was employed. The synchronization arihrediion procedures are described in Sections 3.3 and 3.4
respectively.

3.2 HumanEva-ll

HuMAN EVA -11 contains only2 subjects (both also appear in the/HMAN EVA -1 dataset) performing an extended
sequence of actions that we c@lbmbo In this sequence a subject starts by walking along an iellippath, then
continues on to jog in the same direction and concludes Wwitstibject alternatively balancing on each of the two feet
roughly in the center of the viewing volume. UnlikeuAN EVA -1, this later dataset contains a relatively small test

8http://www.vicon.com/
http://www.spicatek.com/
10http://www.ioindustries.com/
Uhttp://www.pulnix.com/
L2http:/iwww.uniqvision.com/



HuUMAN EVA-I HumMANEvA-II
Hardware System
o3 Manufacturer ViconPeak ViconPeak
Q Number of cameras 6 12
= Camera resolution 1M-pixel MX13 1.3M-pixel
Frame rate 120 Hz 120 Hz
Color Cameras
Number of cameras 3 4
e Frame grabber 10 Industries ViconPeak
% Camera model UniQ UC685CL Basler A602fc
> Sensor Progressive Scan Progressive Scan
o Camera resolution 659 x 494 pixels 656 x 490 pixels
§ Frame rate 60 Hz 60 Hz
Q.
8 Grayscale Cameras
° Number of cameras 4
% Frame grabber Spica Tech
> Camera model Pulnix TM6710
Sensor Progressive Scan
Camera resolution 644 x 448 pixels
Frame rate 60 Hz
Synchronization Software Hardware
Actions (1) Walking, (2) Jogging, (3) Gesturing Combo
(4) Throwing and Catching a ball,
(5) Boxing, (6) Combo
« | Number of subjects 4 2
g Number of frames
Training (synchronized) 6,800 frames
Training (MoCap only) 37,000 frames
Validation 6,800 frames
Testing 24,000 frames 2,460 frames
K .}
L eBe o &
o )
3m 3m
g m % Capture Space 2% m % Capture Space ZmH
A © ©
-
8
& 6} o
&
p
2
5 &
° % O | & o @
Control Station Control Station

Figure 1: HUMAN EVA Datasets The table illustrates the hardware system and configurased to capture the two
datasets, HMANEVA-1 and HUMAN EVA-11. The main difference between the hardware systems fidsardware
synchronization employed inAN EVA-11. The contents of the two datasets in terms subjects,an@nd amount

of data are also noted. The bird’s eye view sketch of the camonfiguration is also shown with rough dimensions
of the capture space and placement of video and motipn @paumeras. The color video cameras (C) are designated
by RGB stripped pattern, grayscale video cameras (BW) bythpty camera icon and motion capture cameras are
denoted by gray circles.



BW1
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Figure 2: Example data from the HUMAN EVA -1 database. Example images of walking subject (S1) frafrsyn-
chronized video cameras (three colored and four grayseaéehown with overlaid synchronized motion capture
data.

set of synchronized frames:(2, 500). The HUMAN EVA-I training and validation data is intended to be sharedsscro
the two datasets with test results primarily being repooi@¢HumMAN EVA-I1.

3.2.1 Hardware

As with HUMAN EVA -1, the ground truth motion capture data was acquired ussystem from ViconPeak. How-
ever, here we used a more recs¥titon MX system with twelve 1.3M-pixel cameras. This newer systeodpced
more accurate motion capture data.

Video data was captured usingiecamera reference system provided by ViconPeak which eliofer frame-
accurate synchronization (using ticon MX Control  module) of the video and motion capture data. Video was



C3 Cc4

Figure 3:Example data from the HUMAN EvA-1l database.Example images of subject (S4) frohrsynchronized
color video cameras performing a combo motion (that inciijdgging as shown).

captured using four BasferA602fc progressive scan cameras with 656x490 resolutienaded a0 Hz. The rough
relative placement of cameras is illustrated in Figure ghi)i. A calibration procedure to align the Vicon and Basler
coordinate systems is discussed in the next section.

3.3 Calibration

The motion capture system was calibrated using Vicon's netgry software and protocol. Calibration of the
intrinsic parameters for the video capture systems was deimg a standard checker-board calibration grid and the
Camera Calibration Toolbox for Matlab [10]. Focal lengh (€ R?), principle point C. € R?) and radial distortion
coefficients (. € R>) were estimated for each camera C. We assume square pixels and let the skew= 0 for
all camerag € C.

The extrinsic parameters corresponding to the rotatiine SO(3), and translation7,. € R3, of the camera
with respect to the global (shared) coordinate frame welkeeddor using a semi-automated procedure to align the
global coordinate axis of each video camera with the globatdinate axis of the Vicon motion capture system. A
single moving marker was captured by the video cameras anud¢hion capture system for a number of synchronized
frames ¢ 1000). The resulting 3D tracked position of the mark‘é?D), t € {1...7GP)} was recovered using the

Vicon software. The 2D position of the marker in the vidEé)z,D), t € {1...72D)}, was recovered using a Hough
circle transform [29] that was manually initialized in thesfiframe and subsequently tracked. The projection of the

Bhttp://www.baslerweb.com/



3D marker positiorf(Ff’D); R.,T.) onto the image was then optimized directly for each camermaibymizing
T(2D)
no PR g, 2o O A BOITE? = JTE2 5 s Re T )
for the rotation,R.., and translation],. Note that the video cameras were calibrated with respetietaalibration
parameters of the Vicon system, as opposed to from the inthgsly.

Inthe HUMAN EvA -1 dataset, the video and motion capture systems were npeity synchronized in hardware,
hence we also solved for the relative temporal scalihge R, between the video and Vicon cameras, and the temporal
offset B. € R. In doing so we assumed that the temporal scaling was cdrstanthe length of a capture sequetice
(i.e. no temporal drift). The 3D positioﬂFﬁi?ch; R.,T.) was linearly interpolated to cope with non-integer indices
tA. + B.. Finally, in Eq. (1),0(¢; A, B.) is defined as:

0 if tA.+ B, > TGP
§(t; Ay Be) =< 0 if tA.+B.<1 (2)
1 otherwise.

The calibration accuracy of the video cameras appears rmostate in the center of the viewing volume (close to the
world origin).

For the HUMAN EVA -1l data, frame-accurate synchronization was achievedaidwware and we used fixed values
A, =2 andB, = 0 for the temporal scaling and offset.

3.4 Synchronization

While the extrinsic calibration parameters and temporaliisg, A., can be estimated once per camera (the Vicon
system was only re-calibrated when cameras mbygdithout hardware synchronization, the temporal off8gtvas
different for every sequence captured. To temporally syomize the motion capture and the video in software, for
HuMAN EvA -1 we manually labeled visible markers on the body for a smsali-set of images(images were used
with several marker positions labeled per frame). Theseléabframes were subsequently used in the optimization
procedure above but with fixed values ¢, T.., and A, to recover a least squares estimate of the temporal dset
for every sequence captured.

4 Evaluation Measures

Various evaluation measures have been proposed for humaomacking and pose estimation. For example,
a number of papers have suggested using joint-angle differas the error measure (see Table 1). This measure,
however, assumes a particular parameterization of the hinody and cannot be used to compare methods where the
body models have different degrees of freedom or have diftggarameterizations of the joint angles. For this dataset
we introduce a more widely applicable error measure basedlsparse set of virtual markers that correspond to the
locations of joints and limb endpoints. This error measuas Virst introduced for 3D pose estimation and tracking in
[74] and later extended in [7]. It has since been also use8@dracking in [41] and for 2D pose estimation evaluation
in [36, 75].

Let x represent the pose of the body. We defibe = 15 virtual markers ag{m,(x)}, i« = 1...M, where
m;(x) € R? (orm;(x) € R?if a 2D body model is used) is a function of the body pose thatnes the position of the
+'th marker in the world (or image respectively). Notice thHafining functionsn;(x) for any standard representation
of the body pos« is trivial. The error between the estimated pésand the ground truth poseis expressed as the
average Euclidean distance between individual virtuakera:

M
DxR) = 2 - lln(o) = iK1 ©

14N practiceA. ~ 2 since the frame rate of motion capture system was routftlyHz and video system 60 Hz.
15Calibration of the Vicon motion capture system changes thieaj coordinate frame and hence requires re-calibratiaexwinsic parameters
of the video cameras as well.
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To ensure that we can compare algorithms that use diffetenbers of parts, we add a binary selection variable
per-markeA = {41, 02, ..., 001} @and obtain the final error function

D(x,%,A) = Z Zénmz —mi(x)]], (4)
31.711

whered; = 1 if the algorithm is able to recover markgrand0 otherwise.
For the sequence df frames we compute the average performance using the folipwi

T

ZD(Xt,Xt,At). (5)

t=1

1
:useq - T
Since many tracking algorithms are stochastic in natur@yvanage error and the standard deviation computed over a
number of runs is most useful. As a convention from previoathwds [7, 36, 74, 75] that have already used this error
measure, we compute the 3D error in millimetersrj and the 2D error directly in the image in pixetsX).

The error measures formulated above are appropriate fosuriag the performance of approaches that are able
to recover the full 3D articulated pose of the person in spacdhe 2D articulated pose of the person in an image.
Some approaches, however, are inherently developed teaettee pose but not the global position of the body (most
discriminative approaches fall into this categaryy.[2, 48, 76]). To make the above error measures appropriate fo
this class of approaches we emplogetative variant

Z”ml — ()], (6)

with m;(x) = m;(x) —mo(x), wherem;(x) is defined as before and,(x) is the position of the marker correspond-

ing to the origin of the root segment. The rest of the equatian also be modified accordingly. It is worth noting

that this measure assumes that the orientation of the bdatljweeto the camera is recovered,; this is typical of most
discriminative methods.

Note that the error measures assume that an algorithm sstumique body pose estimate rather than a distribution
over poses. For algorithms that model the posterior digiob over poses as uni-modal, the mean pose is likely to give
a good estimate of. Most recent methods, however, model multi-modal posteigiributions implicitly or explicitly.
Here the maximum-a-posteriori estimate may be a more appteghoice fox. This is discussed in greater detail in
[7]. Alternative error measures that compute lower-bodadsample- or kernel-based representations of the posteri
are discussed in [7].

5 Baseline Algorithm

In addition to the datasets and quantitative evaluationsan@s, we provide a baseline algoritfragainst which
future advances can be measured. While no “standard” #igoexists in the community, we implemented a fairly
common Bayesian filtering method based on the methods ofsbleert and Reid [17] and Sidenbladhal. [71].
Several variations on the base algorithm are explored Wwithgbal of giving some insight into the important design
choices for human trackers. Quantitative results are pteden the following section.

5.1 Bayesian Filtering Formulation

We pose the tracking problem in a standard way as one of @stigrtheposteriorprobability distributiorp(x; |y1.:)
for the statex; of the human body at timegiven a sequence of image observatigns = (y1,...,y:). Assuming a
first-order Markov process

p(xe[x1:6-1) = p(xe[x¢-1)

16The implementation is available for download frdmtp://vision.cs.brown.edu/humaneva/baseline.html
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with a sensor Markov assumption
P(ye|xit, Yi:e—1) = p(ye|xe),
a recursive formula for the posterior can be derived [3, 19]:

P(X¢|y1:¢) O(p(Yt|Xt)/p(xt|xt71)p(xt71|y1:t71)dxt71- (7

where the integral in Eq. 7 computes theedictionusing the previous posterior and ttemporal diffusiormodel
p(x¢|x¢—1). The prediction is weighted by tHiéelihood p(y:|x;) of the new image observation conditioned on the
pose estimate.

5.1.1 Optimization

Non-parametric approximate methods represent postasuitaitions by a set ofV random samples or particles
with associated normalized weights that are propagatediove using the temporal model and assigned new weights
according to the likelihood function. This is the basis of thequential Importance Resampling (SIR) algorithm, or
Condensation [3, 31]. A variation of SIR is the Annealed iekrtFilter (APF) introduced for human tracking by
Deutscher and Reid [17]. An APF iterates these steps mailfiiples at each time instant in order to better localize the
modes of the posterior distribution, and relies on simualatenealing to avoid local optima.

We briefly summarize our implementation of the Annealedi@arFilter algorithm used here since this forms the
core of our baseline algorithm in the experiments that falldhe Sequential Importance Resampling algorithm is
also tested in the following section but is not describeddtad as it is similar to APF.

At each time instant the APF algorithm proceeds in a set gfeflg’, from layer)M down to layerl, that update
the probability density over the state parameters. The stansity at layefn + 1 is represented using a set df
particles with associated normalized weights,,+1 = {ng,)nﬂ, wt(ffnﬂ N |. For the prediction step at layes, a
Gaussian diffusion model is implemented (section 5.1.gpc8ically, hypotheses are drawn with replacement using
Monte Carlo sampling from the state probability densityhat previous layem + 1 using

N
{Xﬁ?n ijil ~ ZW§731+1N(X1(5,]1)7@+1a04M_mE)- (8)
j=1

The sampling covariance matrix controls the breadth of the search at each layer with a [@rgpreading sampled
particles more widely. From layer to layer we scaldy a parametes.. This parameter is used to gradually reduce
the diffusion covariance matrix at lower layers in order to drive the particles towards thelesoof the posterior
distribution. Typically« is set t00.5.

Sampled poses that exceed the joint angle limits of theddbaction model or result in inter-penetration of limbs
are rejected and not re-sampled within a layer. The remgipémticles are assigned new normalized weights based on
an “annealed” version of the likelihood function (sectiof.3)

(7() ﬂwn
i p(yelxim) )
Trlg,?)n: N t (]) /3771 77/6{17"'7N}7 (9)
> e P(YelXem)

where ™ is a temperature parameter optimized so that approximagdfythe particles get selected for propaga-
tion/diffusion to the next layer by the Monte-Carlo samgeq. 8). The resulting particle sé&t ,,, = {xgi)n, wt(?n N
is then used to compute layer— 1 by re-applying Eqns. (8,9). In tracking, the top layer isialized with the particle
set of the bottom layer at the previous time instafita; 1 = S¢—1.1.

Theexpectedas well as thenaximum a posteriofposes at frameé can be computed from the particle sgt; at

the bottom layer using:

N
= 3 nflnd] 0
=1
T —— "
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Figure 4:(a) Input image.(b) Body Model. The body is represented as a kinematic tree véithddy parts. The red
spheres represent the joint locations where virtual mares placed for computing 3D error: pelvis joint, hips, kee
and ankles, shoulders, elbows and wrists, neck and the ttpediead.(c) Smoothed gradient edge mag;, with
values ranging from 0 (pure black) to 1 (pure white). Spametp shown in red¢g (j)} along the edges of the body

model are matched against the edges in the im@de-oreground silhouette maMtf, with the background being 0
and foreground 1. Sparse points shown in l:ﬂggé (7)} selected in a grid inside the body model are matched against
the foreground silhouette.

SIR is a special case of APF which has only one annealing ([@y/e& 1) and for which the effect of the annealing
temperature parameter is removed’(= 1).

5.1.2 Parametrization of the skeleton

As is common in the literature, the skeleton of the body is eted as a 3D kinematic tree with the limbs repre-
sented by truncated cones (Figure 4(b)). We consider 15 padg: pelvis area, torso, head, upper and lower arms
and legs, hands and feet. There are two types of paramet¢datcribe the pose and shape of the body. The shape
is given by the length and width of the limbs, which in our case assumed known and fixed. Our objective is to
recover the pose of the body, which is parametrized by a extiset of 34 parameters comprising the global position
and orientation of the pelvis and the relative joint anglesigen neighboring limbs. The hips, shoulders and thorax
are modeled as ball and socket joints (3 DoF), the clavigkesllowed 2 DoFs, while the knees, ankles, elbows, wrists
and head are assumed to be hinge joints with 1 DoF.

The subjects in the dataset were all manually measured asgtgndard Vicon protocol to obtain their height,
weight, limb width and shoulder joint offsets. Motion capuraining data was then used to estimate limb lengths
for each subject as well as to learn static and dynamic pfaordifferent motion styles. The raw data provided by
the Vicon motion capture system consists of the location @iehtation of local coordinate systems at each joint,
with consecutive joints along the skeleton not constrateede a fixed distance from each other. Limb lengths are
computed as the median distance between pairs of correisgpjpiht locations over a large set of training motions
and are kept fixed during testing. We also derive joint anighitd and inter-frame joint angle variations from the
statistics of the relative joint angles between neighlipbiody parts.

5.1.3 Likelihoods

For each particle in the posterior representation, itdiik@d represents how well the projection of a given body
pose fits the observed image(s). Many image features coulddx, including appearance models and optical flow
constraints, however, most common approaches rely onusittes and edges [17].

Edge-based Likelihood Functions. We detect edges using image gradients that have been thitegho obtain
binary maps [17]. An edge distance m&fF is then constructed for each image to determine the proyxiofiia pixel
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to an edge. This can be achieved by convolving the binary etdgewith a Gaussian kernel, and then re-mapping it
between 0 and 1. This can be thought of as representing tleepedbability [17] at a given pixel.

The negative log-likelihood is then estimated by projegtinmto the edge map sparse points (for computational
efficiency) along the apparent boundaries of all model partscomputing the mean square error (MSE) of the edge
map responses:

~logp*(yelae) o< g }|Z (1 - M (&5,(7)))° (12)

where{¢;, } is the set of pixel locations corresponding to all projegeihts (indexed by) along all body part edges
induced by pose&;, andM{ is the edge distance map at tih@Figure 4(c)). The reader is referred to [17] for a more
detailed discussion.

Silhouette-based Likelihood Function. Binary foreground silhouette maMtf are generated using a learned Gaus-
sian model for each pixel; the modelis learned from 10 skatakground images and silhouettes subsequently obtained
by comparing the background pixel probability to that of &am foreground model. We model the constraint that
the silhouette of the body model should project inside thaegensilhouette. As before, for computational efficiency,
we only check for a sparse number of points within the limhigyFe 4(d)). The negative log-likelihood of the obser-
vations given posg; is then estimated by taking a number of visible points insitiémbs and projecting them into

the image{g,f(t}. The MSE between the predicted and observed silhouettesédn these points is computed [17]:

—log p! (y+|x¢) o @ Z (1 — M{ (¢, (j)))2~ (13)

Bi-directional Silhouette-based Likelihood Function. The advantage of the previous silhouette likelihood formu-
lation is computational efficiency and similarity to the eelgased likelihood formulation. However, this comes at the
expense of being asymmetric: the body is constrained tosigleé the image silhouette, but not vice versa. This be-
comes a problem when the model predicts occluded parts arsgtqaently does not fully cover the image silhouette.
In Figure 5(b) both legs track the same physical leg, but #reafty is minimal using/ (y;|x;).

(b) (©

Figure 5: Silhouette-based Likelihood. (b—d) traditional silhouette likelihood(e—g) Bi-directional likelihood.
(a) Foreground silhouette mdmf. The red pixels have value 1, and the backgroun@pTracking failure example
using standard likelihood; two legs explain the same sittepixels.(c) Body model silhouette maj/?, obtained by
rendering the cylinders to the image plane. Bhae pixels have value 1, and the backgroun{).Silhouette overlap
(Yellow). The standard silhouette likelihood does not pexealor the fact that th&®ed regions are not explained
by the model.(e) Tracking result with bi-direction silhouette term; botlgsenow correct(f) Body model silhouette
projected into the imagég) Silhouette overlap for bi-direction term; more image pd@te explained (Yellow pixels).

We can correct this by defining a symmetric silhouette Ihadid [80, 81] that penalizes non-overlapping regions
for both silhouettes. For this it is convenient to use a pdetse silhouette representation. Léf represent the
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binary silhouette map for the cylindrical body model anI the image foreground. Figure 5 (d) shows the overlap
between the two silhouettes. We seek to minimize the nonlagweing regionsRed andBlue, therefore maximizing
theYellow region. The size of each region can be computed by sagmomier all image pixelg using

R = > (Ml p)(1 - M) (14)
B = > (M) (1 - M) (15)
Y, = Z(Mf(p)Mf(p))- (16)

The negative log-likelihood of a pose is then defined as atinembination of the fractions of each silhouette not
explained by the other:
By ‘a Ry
By +Y; R +Y,
We make the likelihood symmetric by setting= 0.5. Whena is 0, we effectively get the behavior of the previous
1-sided silhouette likelihoog” (y|x;).

—log p(yi|x¢) o< (1 — a) (17)

Combining Likelihood Functions. We combine image measurements from multiple cameras omptedikelihood
formulations as follows:

K
11
—logp(yt|xt) = ?m E E —logpl(ygk)|xt)a (18)
k=1leL

where K is the number of camerayék) is the image observation in theth camera and. C {e, f,d} is a set of
likelihood functions such as the ones in Eqns. (12,13,17).

5.1.4 Action Models: Temporal Diffusion and Pose Priors

Predictions from the posterior are made using temporal tsod@&e simplest model applicable to generic motions
assumes no change in state from one time to the mgxt: x;_1 [17]. The predictions are diffused using normally
distributed random noise to account for errors in the assiompThe noise is drawn from a multi-variate Gaussian
with diagonal covarianc& where the sampling standard deviation of each body angkt i qual the maximum
absolute inter-frame angular difference for a particulation style [17].

We also implement a hard prior on individual poses to redheestearch space. Specifically, we reject (without
resampling) any particle corresponding to an implausiblyipose. We check for angles exceeding joint angle bounds
and producing inter-penetrating limbs [79]. In our implartagion we explicitly test for intersections between thsto
and the lower arms and between the left and the right calves.

We use the termaction mode(AM) to denote the sampling covarianzeused for particle filtering and the valid
range of the joint angles. Action models can be learned Bpaity for a certain actor or for a particular motion style,
or they can be generic. We only learned subject-genericraatiodels by combining the data from all three available
subjects in the training dataset.

Different motion styles influence the sampling covarianed int angle limits used. The training data in the
HuMANEvVA-| dataset contains walking, jogging, hand gestures, thmgpwand catching a ball, and boxing action
styles from three different subjects. Subsets of these used to learn style-specific action models. For example, the
sampling covariance and the valid range of joint angles yreally smaller for walking than for jogging models,
making the problem simpler for walking test sequences. Egusnces containing both walking and jogging, it
is typical for the flexion-extension movement of the elbowctwer disjoint angle intervals for the two styles. A
combined action model for walking and jogging can be leainsttad.

To represent a generic (style-independent) action modelse the entire HMAN EVA -1 training data to learn the
sampling covariancE®. For the joint limits, our training data is not diverse enbuig be suitable for discovering the
full anatomical range of every joint angle, particularly fbe leg joints. Instead we rely on standard anatomicat join
limits (AJL).
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6 Experiments

We performed a series of experiments with the two differdgo@hms (APF and SIR), several likelihoods and
various action models (priors); details of each variantdascribed along with the corresponding experiment. Most of
these are variations oftzase configuration (BGhat uses annealed filtering with 200 particles per layeay®gis of
annealing, a likelihood based on bi-directional silhogiettching BiS), and an action model appropriate fggneric
motions which enforces anatomical joint limiS{AJL ). We also reject samples where the limbs penetrate each othe
as described above. The experiments were conducted on ¢heetjuences in the AN EVA-II dataset. In each
case, ground truth was available in the first frame to iné&the tracker.

The error of an individual pose was computed using Eq. (4¢iwhverages the Euclidean distance between virtual
markers placed as shown in Figure 4(b). Given the sampletidpa) at each frame, we computed the error of the
expected pose using Eg. (10). This is appropriate for the giR¢e we expect the posterior representation to be uni-
modal at the bottom layer of annealing. Alternatively we Idouave estimated the error of the most likely pose in
the posterior distribution. In our experiments we found timeasure to be consistently worse than the error of the
expected pose by an average of 2 mm with noisier reconsttjmite angle trajectories. We attribute this to the fact
that particle filtering methods represent the posteriobgability as a function of both the likelihood weights and the
density of particles. The MAP estimate may miss a region llaata high posterior probability due to high particle
density but small individual weights.

Our optimization strategy is stochastic in nature and pceduifferent results when running experiments with the
same configuration parameters. To get a measure of perfemeansistency and repeatability, we ran each experiment
five times for each of the sequences, unless explicitly notedrwise. We plot the mean of our error measure (3D
or 2D depending on the experiment) for each time instant allehe runs, while for théBC we also highlight the
standard deviation as a gray overlay in Figures 6,9,1021131 and in the corresponding rows in the error tables.

The errors at each frame are combined to compute the averamge:g., (Eq. 5) for each of the three activity
phases (walking, jogging and leg balancing), as well as Weeadl error over the two sequences. We report the mean
and standard deviation of the average efrgy, over multiple runs.’

Computation time. The computation time is directly proportional to the numbgparticles, number of camera
views and number of layers used, and vastly depends on theecbilikelihood function. Performing full inference
using the one-sided silhouette likelihopH(y; |x;) jointly with the edge likelihoogh® (y|x;) with 1,000 particles per
frame for 4 camera views takes about 40 seconds on a stan@awdtl® software written in Matlab, as opposed to
250 seconds when using the bi-directional silhouetteilikeldp? (y.|x;). Likelihood evaluations dominate the overall
computation time; particle diffusion and checking for litnker-penetration are relatively insignificant by compari.

6.1 Performance of theBase Configuration BC

Sample tracking results overlaid on the images usingtbare shown in Figures 14 and 15, and illustrate visually
what different amounts of error correspond to. The 5 rurB@&uggest that the tracking performance is fairly stable
across runs. This is illustrated in Figure 6 for 3D errorgf&tenance results using other error measures are included
in Figure 7 to allow easy comparison with other methods.

The occasional spikes in the error correspond to the trdokerg track of the arms or the legs swapping places
(e.g. frame 656 in Fig. 14). Since walking and jogging arequic motions, the arms and legs are usually found again
during the next cycle. This is also illustrated when inwgsting the error for individual joints. Figure 8 shows that
limb extremities are the hardest to track. Large errorstfewnirists are obtained when the elbow becomes fully flexed
and gets stuck in this position (e.g. frame 1030 in Fig. 15pnttrial to trial, these events may or may not happen
due to the stochastic nature of the optimization, makingether variance in these cases higher (identified in the plots
in Fig. 6 as spikes in the gray overlay).

The results also highlight the relative degree of difficafyhe two sequences. They are relatively similar, except
for the jogging phase where the second sequence is sigtificanre difficult to track than the first and presents a

1"When computing the results, we ignore 38 frames (298-33%dquence 2 where accurate ground truth was not availabhke afiparent gap
in the error plots during the walking phase is a result of. this
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Run 1 76 mm 84mm 79mm 57mm 82mm 66 mm 74mm
Run 2 82mm 81l mm 105mm 61lmm 87mm T1lmm 81l mm
Run 3 72mm 89mm 89mm 58 mm 85mm 114mm 85mm
Run 4 80mm 82mm 80mm 58 mm 85mm 66 mm 75mm
Run 5 70mm 88 mm 78 mm 64 mm 128 mm 86mm 86 mm

Average|| 765 mm | 85t4 mm | 86t11lmm || 60+3 mm | 93+19mm | 8020 mm || 80+£5mm |

Figure 6:Stability of the baseline algorithm. TheBC was run 5 times to establish the stability of the method. iSrro
for each run in the two sequences are plotted along with thedsird deviation of the error in gray as a gray band in
the plots. The table shows the error for each run along wétatrerage and standard deviation.

larger variance in performance. This is consistent withfélsethat the second subject is jogging faster.

6.2

Comparing Temporal Diffusion Models.

Recall that our APF implementation uses a Gaussian diffusiodel to sample new poses. This is a very weak
form of temporal prior which does not try to predict the postha next time instant from the current one; rather it adds
Gaussian noise to the current pose to expand the searchagtigenext time instant. This diffusion model depends
on the choice of the “sampling covariance’

The two test sequences contain walking and jogging stytdlewfed by balancing on both legs in turn. Training

data,

however, only covered walking and jogging. We havesfioee considered the following subject-independent

action models:

e Walking-style Action Model V) - all walking training data were used to learn the sampliogaciance and the

joint angle limits.

Walking and Jogging-style Action Model\J) - all walking and jogging training data were used to leam th
sampling covariance and the joint angle limits.

Generic Action Model with Anatomic Joint Limit€3-AJL ) - all training data were used to learn the sampling
covariance; joint limits were not derived from training a@albut instead were set to bio-mechanical anatomical
limits. Note that this is the model used in tBE.

Generic Action Model without Joint LimitsG-0JL) - all training data were used to learn the sampling covari-
ance; joint angle limits were not enforced.

All other tracking parameters were the same asBKe Tracking results using the different models are shown in

Figure 9.
All of these remain very weak models in that they do not exghficlescribe how the body moves. Rather they are

heuristics that control how widely to search the state spemend a given pose. We found that the most accurate results
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Figure 7:Performance for various error measures.The performance fdBCis shown for the various error measures.
Top plots: absolute and relative 3D error. Middle plots: 2ieperror for each camera and averaged over all cameras.
The absolute error is given by the average distance betweeefined locations on the body (Eq. 4)), while the relative
error is computed after first globally aligning the groungtitrmodel and the estimated model at the pelvic joint. We
found the two measures to be comparable as the pelvis lodatfairly well estimated by the tracker.

were obtained when the activity matched the style-spedifioa model used. The walking modél worked well

for walking but not for other activities. Walking performamwas good in part because the constrained joint limits
prevented the legs from swapping places. Adding joggindéottaining (VJ) increased the sampling covariance
and extended the joint limits, and consequently improvadop@ance slightly on balancing without significantly
affecting performance on walking. As one might expect, havetheWJ model performed significantly better on
jogging. Bothw andWJ failed to generalize to the balancing style because thé @migle limits were too narrow at
the hips and shoulders.

TheG-AJL extends the joint limits to anatomical values and perforwesg well on the balancing portion. This
is expected since balancing is a very simple motion and istim¢ly easier to track than jogging for example. Clearly
the learned anatomical joint limits fo¥ andWJ prevented these models from generalizing to new poses.ditiaal
G-AJL was able to generalize well to each of the 3 different stydesiaining relatively competitive with the style-
specific actions models. Finally, the performanc&edJL illustrates the importance of enforcing joint angle limits
In this model the lack of such limits led to tracking failuneea during the walking motions.

The experiments suggest that a generic action model wittoam@joint limits is the optimal choice for sequences
with free-style motion.

6.3 Comparing Likelihood Functions.

The bi-directional silhouette likelihod®8iS provides symmetric constraints between the image and nsiddel-
ettes, but it is computationally expensive. The standaydhasetric silhouette likelihoo& is computationally more
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Figure 8: Error for selected individual joint locations. Errors for individual joint locations averaged over the lef
and right side illustrate that the arms are harder to traghk the legs due to occlusions by the torso. Limb extremities
such as wrists and ankles are less constrained and tendltmsgyetore often than the shoulders and hips. The spikes
in error for the ankles correspond to the two legs swappiaggs. The results come from tracking using B@
configuration.

efficient, but provides weaker constraints. Previous wa@rkl[7] has showrs performs well when combined with
the edge likelihoodE using Eq. 18, which we denote lig#+S. We compareBiS with E+S, as well as withE andS
separately, all in the context of tfC which uses a weak prior on motioG{AJL ).

The results in Figure 10 illustrate that tB&S likelihood was the only one capable of tracking the subjeet ¢the
full length of both sequences, with no other likelihood lge@ble to cope with the fast jogging motion. For the first
sequence even the walking motion turned out to be too hanati.t We therefore concentrate our analysis of the
likelihoods on sequence 2 during the walking phase only.

We found that relying solely on edges caused the model to affithe subject and onto the background, with
little chance of recovering from tracking failures. Edgestelp improve the performance of the standard silhouette
likelihood during walking, which otherwise performs pgoas well.

We attribute the fact that thE+S likelihood eventually loses track to the combination of mle likelihood
formulation with a weak generic prigg-AJL that together allow for improbable poses that explain omlst pf the
image observations. To test this, we combined the samehdad with a more specific prioM{J), and found it
performed much better on walking and jogging data even watlfi the number of particles (cf. Fig. 10). This is
consistent with the results reported in [7]. At the same tithe strongeBiS can cope with the weaker prior.

Therefore, for methods that rely on strong priors, simplagmobservations may be enough, but in the absence
of appropriate priors, richer image observation measuntsrere necessary. Clearly better edge detection methods
could be employed and integration of edge information atbegentire boundary (instead of sampling) might improve
results.

6.4 Algorithmic Choices

Comparing Regular and Annealed Particle Filtering. The main computational cost in both the APF and SIR is
the evaluation of the likelihood for each particle. To faidompare the methods we keep the number of likelihood
evaluations constant in comparing across methods. Heheajumber of particles used for SIRe( 1,000) is the
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Figure 9:Comparison of priors. Experimental results fdC using differentaction modelsre shown: walkingW/),
walking and jogging\{VJ) and generic@). For the generic action model, the joint angle limits weoéderived from
training data as in the case of walking or jogging, but rathere set to standard anatomical joint limigs]( ). We use
0JL to denote when joint limits were not enforced. In this caséquemance degraded considerably and we only show
results for one run. FOV, WJ andG-AJL results were averaged over 5 different runs to more effelgticompare
different action models.

product of the number of layers (5) and the number of pagiptr layer (200) in the annealing method. A comparison
of the methods is shown in Figure 11.

In contrast to the APF, the SIR could maintain multi-modasdteoior distributions in which case computing the
error of the expected pose might not be appropriate. Therefe also report the error of the most likely particle
(MAP). We found, however, that the difference in error betwehe expected pose and the most likely pose was
insignificant, and the error curves overlapped. Either wealgtive to APF, SIR was significantly worse and more
prone to losing track of the subject during fast motions.

Varying the Number of Particles. We also varied the number of particles used in the baselinBgroation. Using
more particles helps prevent the tracker from losing trackimproves performance. The tracker is much more stable
when run using 200 particles. Using 100 particles or fewekenahe tracker unstable as illustrated by the significant
increase in error variance in Figure 12. Based on thesesaselconclude that the number of particles needed depends
on the type of motion being tracked, with more particles geiaeded for fast motions than for slow motions.

Varying the Number of Camera Views. The HUMANEVA-II dataset used 4 cameras placed on the corners of a
rectangular area as shown in Figure 1. Assessing perforrfandifferent number of cameras depends on the choice
of cameras. We ran experiments wBIC for all subsets of cameras, once for each camera configarationbining

the errors for configurations with the same number of cameévisan errors and standard deviations are reported in
Figure 13 over 4 configurations for the one camera case, 6 gaif 4 triples, respectively.

The results clearly show that monocular tracking is beybwedibilities of the present algorithm. Adding a second
camera view significantly improved the results but still trecker could not cope with simple walking motions. At
least 3 camera views were needed to track walking motionslamdre needed for more complex motions such as
jogging. For walking motions there was no statistical difece between using 3 or 4 camera views.
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aperformance with the edge likelihood alone was so poor tieadmly show results for a single run.
bThis experiment was run once and differs fr@® in that it uses the WJ action model with only 100 particleseiad of the G-AJL action
model with 200 particles. Its plot is not shown in the grapbweb

Figure 10:Comparison of likelihoods. Edge, standard silhouette and bi-directional silhoudtidihoods are com-
pared. The bi-directional model is more computationallyensive, but it is the only one able to completely track the
subject using a generic prior. The E+S model is shown to bepetitive when combined with a stronger prior that
matches the test motion.

7 Analysis of performance and failures

Model. Our model of the body is an approximation to the true humarylsbépe (though it is fairly typical of the
state of the art). We make two key assumptions that (1) thg lsoghade of rigid cylindrical or conical segments and
(2) joints only model the most significant degrees of freeddfe make no attempts to fit the shape of the limbs to the
image measurements. More accurate body models may leadéameurate tracking results but this hypothesis needs
to be verified experimentally. Also, a more anatomicallyreot modeling of the DoF of the joints may be required
for applications in bio-mechanics [47].

Image likelihoods. One of the main observations of our experiments with thellmesalgorithm is that results of
the approach heavily rely on the quality of the likelihooddwb It is our belief that one of the key problems in human
motion tracking is the formulation of reliable image likediod models that are general, do not require background
subtraction, and can be applied over a variety of imaginglegiding conditions. We have implemented relatively
standard likelihood measures, however, other likelihdwi® been proposed and should be evaluated.

For example, more principled edge likelihoods have beenditated using measurable model edge segments [90],
phase information [57] and the learned statistics of filesponses [66, 70]. Non-edge-based likelihood measures
include optical flow [11, 73], flow occlusion/disocclusioaundaries [79], segmented silhouettes based on level sets
[65], image templates [89], spatio-temporal templateg, [hBncipal component-based models of appearance [72],
and robust on-line local [6, 85] and global appearance nsdé¢l

Motion priors.  While the action models used for diffusion within our franmekwork relatively well in a multi-
view setting, it is likely that monocular tracking can beh&fm stronger prior models of human motion. The use
of strond?® prior motion models are common with early work concentgtn switching dynamical models [54] and

18By strong prior motion models here we mean models that bfaseince towards a particular pre-defined class of motions.
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Figure 11:Algorithm comparison. Performance of the Annealed Particle Filter (APF) and Setjaldmportance Re-
sampling (SIR) methods is shown. SIR performed signifigamtirse than APF and started diverging during jogging,
which affected the performance during the balancing phase.

eigen-models of cyclic motions [51, 52, 73]. More recenihgtion priors that utilize latent spaces as a means of
modeling classes of motions that are inherently low-dinered in nature have become popular. Low-dimensional
non-linear latent variable priors were first (to our knovgedlintroduced in [77] and later extended in [42]; Gaussian
Processes Latent Variable Models [86], Gaussian Proc&sgesmical Models [85] and Factor Analyzers [41] are
popular and effective choices particularly for instancé®ke little training data is available. Weaker implicitqm
that utilize motion capture data directly [71] have alsorbeffective. Lastly, priors based on abstracted [12] or
full-body [88] physical simulations recently have beengarsed for specific classes of motioesy.walking).

Inference. While we explored two inference algorithms, SIR and APFeottromising methods do exist and may
lead to more robust or faster performance. For examplejdhionte Carlo sampling [57], partitioned sampling [43],
or covariance-scaled sampling [79] are all promising aléves. Kalman filtering [90] is another alternative thatym
be appropriate for the applications where one can ensuréhiéikelihood and the dynamics are uni-modal.

Failures. We have observed that it is generally harder to track the nippey, due to frequent occlusions between
the arms and the torso. We attribute these difficulties toptha likelihood functions that are not able to effectively
model internal structure within the silhouette region. Tipper body also tends to exhibit more stylistic variation
across people; the lower body must provide support and henoere constrained by the dynamics of the motion
itself.

The infrequent failures of the baseline algorithm can besifeed into two categories: (1) minor tracking failures
for individual body parts and (2)80-degree rotation in the overall body pose; the latter is mumtter to recover
from in practice. We suspect these failures at least to sottemtecan be attributed to the nature of annealing which
may not represent multi-modal distributions in the postegifectively.

8 Conclusions and Discussions
We have introduced a dataset for evaluation of human poseagiin and tracking algorithms. This is a compre-

hensive dataset that contains synchronized video frompleitamera views, associated 3D ground truth, quantéativ
evaluation measures, and a baseline human tracking ddgorifll the data and associated software is made freely
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Figure 12:Number of particles. The effect of the number of particles on accuracy is plottedte baseline (200)
as well as 50 and 100 particles. The number of particles negeleended on the type of motion being tracked, with
more particles being needed for fast motions than for slowans.

available to the research communityWe hope that this dataset will lead to further advances iowated human
motion estimation as well as provide the means of estahblistiie state of the art performance of current algorithms.

While not new, the baseline algorithm, in addition to pranglperformance against which future advances on this
data can be measured, is designed to serve as a test-betlferdyperiments with likelihood functions, prior models
and inference methods within the context of Bayesian filgeriWe found that the annealed particle filter with 5 layers
and 200 particles per layer worked reliably in practicet@r@han SIR) and that four camera views were necessary for
stable tracking. Furthermore we found that the bi-dire@isilhouette likelihood performed significantly bettiean
the edges and/or standard silhouettes. A fairly weak (g&rigrior” (embodied here as the sampling covariance) that
enforced anatomic joint limits and non-interpenetratibparts worked well across activities; stronger models &hou
be explored.

While we treat the marker-based motion capture data as tieaif\gl truth”, it is worth noting that theue human
motion is somewhat elusive. Even with perfect marker-basetibn capture data, deriving the location of joints in the
human body is not a trivial task. For example, hip joints arewell defined and can only be measured to alout 0
(mm) accuracy given the marker protocol employed by the Vicatesy [13]. The true gold standard in localizing
the position of hip joints is still debated in the bio-mecitatiterature [16]. The placement of markers over regular
clothes and limits on the calibration accuracy of the vidameras with respect to the Vicon calibration may lead to
additional errors that are hard to quantify. While currgnthavailable, it is clear that other methods of simultarsou
capturing video and motion capture data are necessary tbradtow better ground truth, then to at least lift the need
of performing the motion in a laboratory environment. Catnesearch in non-marker-based methods for capturing
human motion [87] may prove to be viable alternatives in ayears.
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19Data and code available http://vision.cs.brown.edu/humaneva/

23



Sequence 1 Sequence 2

3507 VAR 350 i
B ttlial king Phase = 300
E 2507 ' £ 250
= 208 ; = 208
5 15 s 15
o o
£ 100 = 100
w 50 w 50
0 1 1 1 1 1 i O 1 1 1 1 1 L
200 400 600 800 1000 1200 200 400 600 800 1000 1200
| ] camera 2 cameras mmmmmm 3 cameras s 4 cameras |
[ Sequence 1 I Sequence 2 ] Overall
| Walk [ Jog [ Balance [ Walk [ Jog [ Balance [l
1 camera 515+59 mm 845+336mm 485+98 mm 526t+241mm 818+456 mm 735+482mm 654+253mm
2 cameras|| 1394+47 mm 173+38mm 348+128mm 132+78 mm 212422 mm 231+148mm 206+35mm
3 cameras 764 mm 111442 mm 174+179mm 63+5mm 134+68 mm 258+206mm 136+75mm
4 cameras 76+5mm 85+4 mm 86+11mm 60+3 mm 93+19mm 80+20mm 80+5mm

Figure 13: Number of cameras. At least 3 camera views are needed to track walking motiodsaarteast 4 are
needed for more complex motions such as jogging.
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