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Abstract 

Image “appearance” may change over time due to 
a variety of causes such as 1) object or camera mo- 
tion; 2) generic photometric events including varia- 
tions in illumination (e.g. shadows) and specular re- 
jections; and 3) “iconic changes” which are specific 
to the objects being viewed and include complex occlu- 
sion events and changes in the material properties of 
the objects. We propose a general framework for  repre- 
senting and recovering these “appearance changes ’’ in 
an image sequence as a “mixture” of different causes. 
The approach generalizes previous work on optical 
$ow to provide a richer description of image events and 
more reliable estimates of image motion. 

1 Introduction 
As Gibson noted, the world is made up of surfaces that “flow 
or undergo stretching, squeezing, bending, and breaking in 
ways of enormous mechanical complexity” ([9], page 15). 
These events result in a wide variety of changes in the “ap- 
pearance” of objects in a scene. While motion and illu- 
mination changes are examples of common scene events 
that result in appearance change, numerous other events oc- 
cur in nature that cause changes in appearance. For exam- 
ple, the color of objects can change due to chemical pro- 
cesses (eg., oxidation), oLjects can change state (eg., evap- 
oration, dissolving), or objects can undergo radical changes 
in structure (eg., exploding, tearing, rupturing, boiling). In 
this paper we formulate a general framework for represent- 
ing appearance changes such as these. In so doing we have 
three primary goals. First, we wish to “explain” appearance 
changes in an image sequence as resulting from a “mixture” 
of causes. Second, we wish to locate where particular types 
of appearance change are taking place in an image. And, 
third, we want to provide a framework that generalizes pre- 
vious work on motion estimation. 

We propose four generative models to “explain” the 
classes of appearance change illustrated in Figure 1. A 
change in “form” is modeled as the motion of pixels in one 
image to those in the next image. An image at time t + 1 

Form Change 

Iconic Change 

Illumination Change 

Specular Reflection 

Figure 1: Examples of appearance change. 

can be explained by warping the image at time t using this 
image motion. 

Illumination variations (Figure 1, upper right), may 
be global, occurring throughout the entire image due to 
changes in the illuminant, or local as the result of shadow- 
ing. Here we model illumination change as a smooth func- 
tion that amplifiedattenuates image contrast. By compari- 
son, specular reflections (Figure 1, lower right) are typically 
local and can be modeled, in the simplest case, as a near sat- 
uration of image intensity. 

R e  fourth class of events considered in this paper is 
iconic change [6]. We use the word “iconic” to indicate 
changes that are “pictorial.” These are systematic changes 
in image appearance that are not readily explained by physi- 
cal models of motion, illumination, or specularity. A simple 
example is the blinking of the eye in Figure 1 (lower left). 
Examples of physical phenomena that give rise to iconic 
change include occlusion, disocclusion, changes in surface 
materials, and motions of non-rigid objects. In this paper we 
consider iconic changes to be object specific and we “learn” 
models of the the iconic structure for particular objects. 

These different types of appearance change commonly 
occur together with natural objects; for example, with artic- 
ulated human motion or the textural motion of plants, flags, 
water, etc. We employ a probabilistic mixture model for- 
mulation [141 to recover the various types of appearance 
change and to perform a soft assignment, or classification, 
of pixels to causes. This is illustrated in Figure 2. In natural 
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Image at t+l estimation is to make it “robust” in the presence of these un- 
modeled changes in appearance (ie. violations of the bright- 
ness cowtancy assumption) [3]. The approach here is quite 
different in that we explicitly model many of these events 
and hence extend the notion of “constancy” to more com- 
plex types of appearance change. 

One motivation for this is our interest in recognizing com- 

n explanation - (warp) 

) =  - - 
- 

Iconic explanation 4 Weights 
(linear combination orbasis images) 

a0 + a1 + a2 + ... 

Figure 2: Object specific appearance change between a im- 
ages at times t and t + 1 is modeled as a mixture of motion 
and iconic change (see text). 

speech the appearance change of a mouth between frames 
can be great due to the appearance/disappearance of the 
teeth, tongue, and mouth cavity. While changes around the 
mouth can be modeled by a smooth deformation (image t+ 1 
warped to approximate image t )  the large disocclusions are 
best modeled as an iconic change (taken here to be a lin- 
ear combination of learned basis images). We use the EM- 
algorithm [ 141 to iteratively compute maximum likelihood 
estimates for the deformation and iconic model parameters 
as well as the posterior probabilities that pixels at time t are 
explained by each of the causes. These probabilities are the 
“weights” in Figure 2 and they provide a soft assignment of 
pixels to causes. 

Below we describe this mixture-model formulation and 
some simple appearance-change models that generalize the 
notion of brightness constancy used in estimating optical 
flow. 

2 Context and Previous Work 
Previous work in image sequence analysis has focused on 
the measurement of optical flow using the brightness con- 
stancy assumption. The assumption states that the image 
brightness I ($ ,  t )  at a pixel I = [x, y] and timet is a simple 
deformation of the image at time t + 1: 

I(.’, t )  = I(.’ - qq, t + l), (1) 

where .’(.’) = (U(.’), U(.’)) represents the horizontal and 
vertical displacement of the pixel. This model is applied in 
image patches using regression techniques or locally using 
regularization techniques. The recovered image motion can 
be used to “warp” one image towards the other. 

While optical flow is an important type of image appear- 
ance change it is well known that it does not capture all the 
important image events. One focus of recent work in motion 

plex non-rigid and articulated motions, such as human facial 
expressions. Previous work in this area has focused on im- 
age motion of face regions such as the mouth [5] But im- 
age motion alone does not capture appearance changes such 
as the systematic appearance/disappearance of the teeth and 
tongue during speech and facial expressions. For machine 
recognition we would like to be able to model these inten- 
sity variations. 

Our framework extends several previous approaches that 
generalize the brightness constancy assumption. Mukawa 
[ 151 extended the brightness constancy assumption to allow 
illumination changes that are a smoothly varying function 
of the image brightness. In a related paper, Negahdaripour 
and Yu [17] proposed a general linear brightness constraint 

I ($ ,  t )  = m(2, t )  I ( Z -  .’(.’), t + 1) + e(?, t )  (2) 

where m(2, t )  and c ( l ,  t )  are used to account for multiplica- 
tive and additive deviations from brightness constancy and 
are assumed to be constant within an image region. 

Another generalization of brightness constancy was pro- 
posed by Nastar et al. [161. Treating the image as a sur- 
face in 3D XYI-space, they proposed a physically-based ap- 
proach for finding the deformation from an XYI surface at 
time t to the XYI surface at t + 1. This allows for a gen- 
eral class of smooth deformations between frames, includ- 
ing both multiplicative and additike changes to intensity, as 
does the general constraint in (2). 

A number of authors have proposed more general linear 
models of image brightness [2, 10, 11, 181. For example, 
Hager and Belhumeur [ 101 use principal component analy- 
sis (PCA) to find a set of orthogonal basis images, { Bj (Z)}, 
that spans the ensemble of images of an object under a wide 
variety of illuminant directions. They constrain deviations 
from brightness constancy to lie in the subspace of illumi- 
nation variations, giving the constraint 

n 

I(?, t )  = qz- G(.’;6), t + 1) + C b j B j ( ? ) ,  (3 )  
j=1 

where Z(I; 6) is a parameterized (affine) model of image 
motion. The authors estimate the motion parameters 6 = 
[ml, . . ., m k ]  and the subspace parameters b~ ...bn. Hal- 
linan [ l l ]  proposed a model that included both a model 
of illumination variation and a learned deformation model 
(EigenWarps). These approaches are also related to the 
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eigentracking work of Black and Jepson [4] in which sub- 
space constraints are used to help account for iconic changes 
in appearance while an object is being tracked. 

In [6] we extended these general linear brightness models 
by allowing spatially varying explanations for pixels 

I( 5, t )  = WO( .‘)rMotion(z) + w1 (Z)IIconic(E). 

The terms wi (2) are spatially varying “weights” between 
zero and one that indicate. the extent to which a pixel can be 
explained, or modeled, by the individual causes. 

The approach presented here casts the above models in a 
probabilistic mixture model framework. The models above 
can be thought of as different generative models that can 
be used to construct or explain an image; in a sense, they 
embody different “constancy” assumptions. Unlike the ap- 
proaches above, however, the mixture model framework 
factors appearance change into multiple causes and per- 
forms a soft assignment of pixels to the different models 

3 Mixture Model of Appearance Change 
Mixture models [ 141 have been used previously in motion 
analysis for recovering multiple motions within an image 
region [ I ,  13, 191. The basic goals are to estimate the pa- 
rameters of a set of models given data generated by multi- 
ple causes and to assign data to the estimated models. Here 
we use this idea to account for co-occurring types of appear- 
ance change. Within some image region R we may expect a 
variety of appearance changes to take place between frames. 

In particular, we assume that a pixel I(?,  t )  at location 
2 E R and time t is generated, or explained, by one of n 
causes IC, ,  i = 1, .  . . , n. The causes, IC, (2, t ;  &), can 
be thought of as overlapping “layers” and are simply im- 
ages that are generated given some parameters &. We will 
consider four causes below namely: motion ( I C , ) ,  illumina- 
tion variations ( IC,) ,  specular reflections ( I c ~ ) ,  and iconic 
changes (1~~). Given these causes, the probability of ob- 
serving the image I (Zl  t )  is then 

n 

2 = 1  

where the T ,  are mixture proportions [14] which we take 
to be 1/n for each i indicating that each cause is equally 
likely. The & are parameters of model IC,  for which we 
seek a maximum likelihood estimate and the 0% are scale pa- 
rameters. Here we make the very crude assumption that the 
causes are independent. 

In contrast to the traditional mixture of Gaussians formu- 
lation, the component probabilities, pi ( I ( Z ,  t )  I& rZ), are 
defined to be 

I S I I I I ~ I I I I  
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Figure 3: Affine flow basis set. 
I 

. .  

L1 
Figure 4: Linear illumination-change basis images. 

This is a robust likelihood function (Figure 5) the tails of 
which fall off more sharply than those of a normal distribu- 
tion. This reflects our expectation that theresiduals I (  5, t ) -  
IcZ(Z, t ;  Gz) contain outliers [12]. 

Below we define the individual sources of appearance 
change. 

Motion: Motion is a particularly important type of ap- 
pearance change that is modeled by 

Icl(Z,t;fi) = I ( 2 -  Z(Z;7%), t + 1). 
This represents the image at timet+ 1 warped by a flow field 
U’(?; 6). We use a parametric description of optical flow in 
which the motion in an image region is modeled as a linear 
combination of IC basis flow fields MJ (z): 

where 61 = fii = [ml,  . . . , mk] is the vector of parameters 
to be estimated. An affine basis set, shown in Figure 3, is 
used for the experiments in Section 5. 

Illumination Variations: Illumination changes may be 
global as a result of changes in the illuminant, or local as 
the result of shadows cast by objects in the scene. The mix- 
ture formulation allows both of these types of variation to 
be modeled. 

We adopt a simple model of illumination variation 

Ic,(?,t; i j  = L(Z; T j  I ( 5  - G(Z; &), t + l), ( 5 )  

which states that the illumination change is a scaled version 
of the motion-compensated image at time t + 1. When esti- 
mating the parameters = 1 we assume that the motion U’ 
is known and fixed. 

We take L(E;  4 to be a parametric model, expressed as a 
weighted sum of basis images. For example, in the case of 
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Pi( I (2 ,  t)l.’i, .i) $(r ,  a) 
Figure 5: A robust likelihoodpi and $ (the derivative of the 
log likelihood). 

linear spatial variation, L is given by 
3 

qz; f l  = I1 + /2(x - xc) + 13(y - yc) = li Li(.‘) 
i = l  

-4 

where (xC, yc) is the center of the relevant image region, 1 = 
[/I, 1 2 ,  /3] are the model parameters, and L;(5) denote the 
basis images, like those for the linear model in Figure 4. 

Specularity Model: Specularities are typically local and 
result in near saturation of image brightness. While more 
sophisticated models of specularities may be formulated, we 
have experimented with a simple model which works well 
in practice: 

3 

~ c , ( ~ , t ;  .F) = S ~ + S ~ ( ~ - ~ , ) S S S ( ~ - Y , )  = Csi si(.’) 
i = l  

where Si are the same linear basis images as in Figure 4 and 
CY3 = s. 

Iconic Change: In addition to the generic types of ap- 
pearance change above, there are image appearance changes 
that are specific to particular objects or scenes. Systematic 
changes in appearance exhibit spatial or temporal structure 
that can be modeled and used to help explain appearance 
changes in image sequences. Recall the example of human 
mouths in Figure 2. 

As with the models above, we use a parametric model 
of iconic change. However, here we learn the appropriate 
model by constructing a linear, parametric model of the in- 
dividual frames of a training image sequence using principal 
component analysis. This is described in Section 6; for now 
it is sufficient to think of the iconic model, like the specular- 
ity model, as a linear combination of basis images A; 

A . . +  

Q 

Ic4(2*t; 2) = &4i(5), (6) 
i=l  

where 6 4  = d = [ u l ,  . . . , uy]  is the vector of scalar values 
to be estimated. 

4 EM-Algorithm 
We seek a maximum likelihood estimate of the parameters 
GI ,  . . . , iy’, and a soft assignment of pixels to models. If the 

parameters of the models are known, then we can compute 
the posterior probability, wi(5,  ui), that pixel 5 belongs to 
cause i. This is given by [ 141 

These ownership weights force every pixel to be explained 
by some combination of the different causes. As the U go 
to zero, the likelihood function approaches a delta function 
hence, for small values of U, the weights will tend towards 
zero or one. 

The maximum likelihood estimate [ 141 of the parameters 
is defined in terms of these ownership weights and can be 
shown to satisfy 

where dlog pi(I(2,t)1Gi, ui)/ddi = 

and where 

is a robust influence function [ 121 (Figure 5 )  that reduces the 
effect of “outliers” on the maximum likelihood estimate. 

In the case of mixtures of Gawsian densities, the param- 
eters can be computed in closed form. In the case of the ro- 
bust likelihood function we incrementally compute the d,  
satisfying (8). Briefly, we replace Gz with Gz + 6Gz where 
6& is an incremental update. We approximate (8) by its 
first order Taylor expansion, simplify, and solve for 6Gi. We 
then update & c & + GZ and repeat until convergence. 

The EM algorithm alternates between solving for the 
weights given an estimate of the IC% (the Expectation step), 
and then updating the parameters with the weights held fixed 
(the Maximization step). A continuation method is used to 
lower the value of U during the optimization to help avoid 
local maxima. For all the experiments in this paper the value 
of ui began at 45.0 and was lowered by a factor of 0.95 
at each iteration of the optimization to a minimum of 10.0. 
These same values of U were used for all the models. The 
algorithm is embedded within a coarse-to-fine process that 
first estimates parameters at a coarse spatial resolution and 
then updates them at successively finer resolutions. 

As in [ 131 we can add an explicit “outlier layer” with a 
fixed likelihood 

2u3 

r(u2 + (2 .5~)2)2‘  Po = 
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c: flow 

d: stable e: w1 f :  w2 

Figure 6: Illumination Experiment (cast shadow of a hand). 

This term is used only in the normalization in Equation (7 )  

greater than 2 . 5 ~  will have weights lower than the outlier 
layer and which will be reduced further by the normaliza- 
tion. 

which is performed over i = 0 , .  . . .  n. Residual errors 

5 Generic Appearance Change 
T h i s  section presents examples of generic appearance chan- 
ges that are common in natural scenes, namely, motion, il- 
lumination variations, and specularities. 

5.1 Shadows 
We first consider a mixture of motion and illumination vari- 
ation (Figure 6). In this experiment we use a mixture of 
just two models: the affine motion model ( I c l )  and the lin- 
ear illumination model (1~~). We estimate the ownership 
weights wl(Z) and w2(2) that assign pixels to the models 
and the motion parameters dl and illumination parameters 
d2 as described in the previous section. A three level pyra- 
mid is used in the coarse-to-fine estimation and the motion 
is computed using the affine model presented in Section 3. 

The appearance variation between Figures 60 and b 
includes both global motion and an illumination change 
caused by a shadow of a hand in frame t + 1. The esti- 
mated motion field (Figure 6c ) contains some expansion as 
the background surface moved towards the camera. Figures 
6e and f show the weight images wl(Z) and w2(Z) in which 
the shadow region of the hand is clearly visible. The mo- 
tion weights wl(2) are near l (white) when the appearance 
change is captured by motion alone. When there is illumi- 
nation change as well as motion, the weights w1(2) are near 
0 (black). The gray regions indicate weights near 0.5 which 
are equally well described by the two models. 

We can produce a “stabilized” image using the weights: 

d: stable e: w1 f: w3 

Figure 7 :  Specularity Experiment (a moving stapler). 

The stabilized image is shown in Figure 64 note the shadow 
has been removed and the image is visually similar to 

The illumination model only accounts for a globally 
linear illumination change while the actual shadow fades 
smoothly at the edges of the hand. To account for local vari- 
ations in illumination one could replace the linear model L 
with a regularized model of the illumination variation (see 
[ 191 for regularization in a mixture-model framework). 

I ( 5 ,  t ) .  

5.2 Specularities 
Consider the example in Figure 7 in which a stapler with 
a prominent specularity on the metal plate is moved. We 
model this situation using a mixture of motion ( IC , )  and 
specularity ( 1 ~ ~ )  models. This simplified mode1 of specu- 
larities assumes that some regions of the image at timet can 
be modeled as a warp of the image at timet + 1 while others 
are best modeled as a linear brightness function. 

A four level pyramid was employed to capture the large 
motion between frames; other parameters remained un- 
changed. The estimated flow field is shown in Figure 7c. 
The stabilized image, using motion and the estimated lin- 
ear brightness model is shown in Figure 7d. Note how the 
weights in Figures 7e and f are near zero for the motion 
model where the specularity changes significantly. The re- 
gion of specularity in the lower right corner of the metal 

models. 
plate is similar in both frames and hence is “shared” by both 

6 Experiments: Icsnic Change 
Unlike the generic illumination and reflection events in 
the previous section, here we consider image appearance 
changes that are specific to particular objects or scenes. First 
we show how parameterized models of image motion and 
iconic structure can be learned from examples. We then use 
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Figure 8: Example frames from training sequences of facial 
expressions (anger, joy, sadness). 

these in our mixture model framework to explain motion 
and iconic change in human mouths. 

6.1 Learned Iconic Model 
To capture the iconic change in domain-specific cases, such 
as the mouths in Figure 8, we construct a low-dimensional 
model of the p images in the training set using principal 
component analysis (PCA). For each s = 71 x m training 
image we construct a 1D column vector by scanning the pix- 
els in the standard lexicographic order. Each 1D vector be- 
comes a column in an s x p matrix B. We assume that the 
number of training images, p ,  is less than the number of pix- 
els, s, and we use singular value decomposition (SVD) to 
decompose B as 

Here, A is an orthogonal matrix of size s x s, the columns 
of which represent the principal component directions in the 
training set. C, is a diagonal matrix with singular values 
XI, A?, . . . , X, sorted in decreasing order along the diago- 
nal. 

Because there is a significant amount of redundancy in the 
training sequence, the rank of B will be much smaller than 
p .  Thus if we express the ith column of A as a 2D basis im- 
age Ai (Z), then we can approximate images like those in the 
training set as 

a 

2 = 1  

where Z = [ U I ,  . . . , a 4 ]  is the vector of scalar values to be 
estimated and q < p .  

Figure 8 shows samples of mouth images taken from a 
training set of approximately 500 images. The training set 
included image sequences of a variety of different subjects 
performing the facial expressions “joy,” “anger,” and “sad- 
ness.” The faces of each subject were stabilized with re- 
spect to the first frame in the sequence using a planar mo- 
tion model [5]. The mouth regions were extracted from the 
stabilized sequences and PCA was performed. The first 11 
basis images account for 85% o f  the variance in the training 
data and the first eight of these are shown in  Figure 9. 

I 2 3 4 

5 6 7 8 

Figure 9: First eight basis appearance images, AI(Z) ,  . . . , 
As(Z) ,  for the facial expression experiment. 

1 2 3 

5 6 I 

Figure 10: First eight basis flow fields, M I  (Z), 
for the facial expression mouth motion. 

6.2 Learned Deformations 
We learn a domain-specific model for the deformation com- 
ponent of the appearance change in much the same way us- 
ing PCA (see [7]). We first compute image motion for each 
training sequence using the brightness constancy assump- 
tion and a robust optical flow algorithm [ 3 ] .  The training 
set consists of a set of p optical flow fields. For images with 
s = n x m pixels, each flow field contains 2s quantities (i.e., 
the horizontal and vertical flow components at each pixel). 
For each flow field we place the 2s values into a column vec- 
tor by scanning U ( $ )  and then U(.’) in lexicographic order. 
The resulting p vectors become the columns of a 2s x p ma- 
trix F .  

As above we use PCA to decompose F as F = ME, V,’. 
Flow fields like those in the training set can then be approx- 
imated as 

k 

G(Z; 6) = Em3 &w3(2), 
j=1 

where k < p ,  and MJ (2)  denotes the j t l L  column of M in- 
terprated as a 2D vector field. Note that this learned model is 
conceptually equivalent to the affine models used above ex- 
cept that it is tailored to a domain-specific class of motions. 

Figure 10 shows the first eight basis flow fields recovered 
for this training set. The first 1 1  basis flow fields account for 
85% of the variance in the training set. 

6.3 
We model appearance change of a mouth as a mixture of the 
learned motion and iconic models. We performed a num- 
ber of experiments with image sequences of subjects who 

Mixture of Motion and lconic Change 
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were not present in the training set. In our experiments we 
used 11 basis vectors for both motion and iconic models. 
We estimated the parameters for deformation GI = 6, 
iconic change 64 = Z, and the ownership weights, w1 and 
w4 between each consecutive pair of frames using the EM- 
algorithm as described earlier with a four-level pyramid. 

Figure 11 shows two consecutive frames from a smiling 
sequence; notice the appearance of teeth between frames. 
The motion model, (Icl (Z, t ;  GI)), does a good job of cap- 
turing the deformation around the mouth but cannot account 
for the appearance of teeth. The recovered flow field is 
shown in Figure 1 Id and one can see the expansion of the 
mouth. The iconic model, IC*, on the other hand, does a 
reasonable job of recovering an approximate representation 
o f  the image at time t (Figure 1 IC). The iconic model how- 
ever does not capture the brightness structure of the lips in 
detail. This behavior is typical. The iconic model is an ap- 
proximation to the brightness structure so, if the appearance 
change can be described as a smooth deformation, then the 
motion model will likely do a better job of explaining this 
structure. 

The behavior of the mixture model can be seen in the 
weights (Figures 1 l g  and 1 Ih). The weights for the motion 
model, wl(Z),  are near zero in the region of the teeth, near 
one around the high contrast boarder of the lips, and near 0.5 
in the untextured skin region which is also well modeled by 
the iconic approximation Icq. 

Figure 1 lfis the “stabilized” image using both motion and 
iconic models ( w ~  (Z)Icl (Z, t ; GI)+ + wq( Z ) k 4  (2, t ; &)) 
Note how the stablized image resembles the original im- 
age in Figure 1 la. Also notice that the iconic model fills in 
around the edges of the stabilized image where no informa- 
tion was available for warping the image. 

6.4 Discussion 
Our motivation in exploring image deformation and iconic 
change is to address a general theory of appearance change 
in image sequences. While optical flow characterizes 
changes that obey brightness constancy, it is only one class 
of appearance change. Occlusion/disocclusion is another 
class in which one surface progressively covers or reveals 
another. While optical flow and occlusionldisocclusion 
have been studied in detail, other types of appearance vari- 
ations have not. In particular, with complex objects such as 
mouths, many of the appearance changes between frames 
are not image deformations that conserve brightness. 

One could ask: “Why model image deformation”? While 
all image changes might be modeled by iconic change 
this does not reflect the natural properties of objects (their 
“structural texture” [9]) and how they change. Motion is a 
natural category of appearance change that is important to 
model and recover. 

One could also ask: “Why model iconic change”? While 

optical flow methods exist that can ignore many appear- 
ance changes that do not obey brightness constancy, it is 
important to account for, and therefore model, these im- 
age changes. Iconic change may be important for recogni- 
tion. For example, we postulate that the systematic appear- 
ancetdisappearance of teeth should be a useful cue for aid- 
ing speech and expression recognition. In addition, we be- 
lieve that the temporal change of some objects may not be 
well modeled as image deformation. For example, bushes 
and trees blowing in the wind exhibit spatiotemporal texture 
that might best be modeled as a combination of motion and 
iconic change. 

7 Future Directions 
The experiments here have focused on pairs of causes. A 
natural extension of the work would be to combine all four 
types of appearance change in a single mixture formulation. 
Towards this end, a research issue that warrants further work 
is the use of priors on the collection of models that enable 
one to prefer some explanations over others. 

Additionally, we may expect more than one instance of 
each type of appearance change within an image region. In 
this case we will need to estimate the number of instances 
of each appearance model that are required. There has been 
recent work on this topic in the area of multiple motion es- 
timation [ 1,201. 

A related issue is the use of spatial smoothness in the 
modeling of appearance change. In place of the parameter- 
ized models we might substitute regularized models of ap- 
pearance change with priors on their spatial smoothness. In 
a mixture model framework for motion estimation, Weiss 
[19, 201 has shown how to incorporate regularized models 
and smoothness priors on the ownership weights. 

Another outstanding research issue concerns the learn- 
ing and use of domain-specific models when more than one 
domain of interest exists. When one has several domain- 
specific models the problems of estimation, indexing, and 
recognition become much more interesting (cf. [7]). 

8 Conclusions 
Appearance changes in image sequences result from a com- 
plex combination of events and processes, including mo- 
tion, illumination variations, specularities, changes in mate- 
rial properties, occlusions, and disocclusions. In this paper 
we propose a framework that models these variations as a 
mixture of causes. To illustrate the ideas, we have proposed 
some simple generative models. 

Unlike previous work, the approach allows us to pull 
apart, or factor, image appearance changes into different 
causes and to locate where in the image these changes oc- 
cur. Moreover, multiple, competing, appearance changes 
can occur in a single image region. We have implemented 
and tested the method on a variety of image sequences with 
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Figure I1 : Facial Expression Experiment. 

different types of appearance change. 
One way to view this work is as a generalization of cur- 

rent work in the field of motion estimation. The framework 
presented here is more general than previous approaches 
which have relaxed the brightness constancy assumption. 
We expect that more complex models of illumination varia- 
tion and iconic change can be accommodated by the frame- 
work and we feel that it presents a promising direction for 
research in image sequence analysis. 
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