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Abstract. Relations between anisotropic diffusion and robust statistics
are described in this paper. We show that anisotropic diffusion can be
seen as a robust estimation procedure that estimates a piecewise smooth
image from a noisy input image. The “edge-stopping” function in the
anisotropic diffusion equation is closely related to the error norm and
influence function in the robust estimation framework. This connection
leads to a new “edge-stopping” function based on Tukey’s biweight robust
estimator, that preserves sharper boundaries than previous formulations
and improves the automatic stopping of the diffusion. The robust statis-
tical interpretation also provides a means for detecting the boundaries
(edges) between the piecewise smooth regions in the image. Finally, con-
nections between robust estimation and line processing provide a frame-
work to introduce spatial coherence in anisotropic diffusion flows.

1 Introduction

Since the elegant formulation of anisotropic diffusion introduced by Perona and
Malik [5], a considerable amount of research has been devoted to the theoretical
and practical understanding of this and related methods for image enhancement.
See [1, 2, 6] and references therein. In this paper we develop a statistical inter-
pretation of anisotropic diffusion, specifically, from the point of view of robust
statistics. We show that the Perona-Malik diffusion equation is equivalent to
a robust procedure that estimates a piecewise constant image from a noisy in-
put image. The “edge-stopping” function in the anisotropic diffusion equation
is closely related to the error norm and influence function in the robust estima-
tion framework. We exploit this robust statistical interpretation of anisotropic
diffusion to choose alternative robust error norms, and hence, alternative “edge-
stopping” functions. In particular, we propose a new “edge-stopping” function
based on Tukey’s biweight robust error norm, which preserves sharper boundaries
than previous formulations and improves the automatic stopping of the diffu-
sion. The robust statistical interpretation also provides a means for detecting
the boundaries (edges) between the piecewise constant regions. These bound-
aries are considered to be “outliers” in the robust estimation framework. Edges
in a smoothed image are, therefore, very simply detected as those points that are



treated as outliers. Details, examples, and extensions, including connections to
line processing, can be found in [2]. The connections to line processing present a
framework for introducing spatial coherence in anisotropic diffusion [2]. Exten-
sions of this theory to vector-valued images (e.g., color) and to robust sharpening
are discussed in detail in [3].

2 Anisotropic diffusion

Diffusion algorithms remove noise from an image by modifying the image via a
partial differential equation (PDE). For example, consider applying the isotropic

diffusion equation (the heat equation) given by w = div(VI), using the
original (degraded/noisy) image I(z, y, 0) as the initial condition, where I(z,y, 0) :
IR? — IR* is an image in the continuous domain, (z,y) specifies spatial posi-
tion, ¢ is an artificial time parameter, and where VI is the image gradient.
Perona and Malik [5] replaced the classical isotropic diffusion equation with
% = div(g(]| VI |))VI), where || VI || is the gradient magnitude, and
g(|| VI ||) is an “edge-stopping” function. This function is chosen to satisfy
g(z) — 0 when z — oo so that the diffusion is “stopped” across edges.

Perona and Malik discretized their anisotropic diffusion equation as I't! =
It + ﬁ ZpEns 9(VI, ,)VI ,, where I! is a discretely-sampled image, s denotes
the pixel position in a discrete, two-dimensional grid, and ¢ now denotes discrete
time steps (iterations). The constant A € IRT is a scalar that determines the rate
of diffusion, 5, represents the spatial neighborhood of pixel s, and |5;| is the num-
ber of neighbors. They linearly approximated the image gradient (magnitude)
in a particular direction as VI, , = I, — I, p € 7.

3 Robust estimation

We assume that an image is a piecewise constant function that has been cor-
rupted by zero-mean Gaussian noise with small variance. The differences between
pairs of corrupted pixels in the same (originally constant) region will be small and
normally distributed. This is not true for pixels across edges. In estimating the
brightness of the image on one side of a brightness discontinuity, measurements
from the other side should be “rejected” as “outliers” that violate the statisti-
cal assumptions. The field of robust statistics [4] is concerned with estimation
problems such as this in which the data contains gross errors, or outliers.

Motivated then by robust statistics, we wish to find an image I that satisfies
the optimization criterion miny ) ; ZpEns p(I, — I,,0), where p(-) is a robust
error norm and o is a “scale” parameter related to the rejection of outliers,
and is discussed in [2]. To minimize this the intensity at each pixel must be
“close” to those of its neighbors. This equation can be solved by gradient descent:
i =r4 ﬁ > pen, YUp — I, o), where 9(-) = p'(-), and ¢ again denotes the
iteration. The update is carried out simultaneously at every pixel s.



The specific choice of the robust error norm or p-function is critical. To
analyze the behavior of a given p-function, we consider its derivative v, which
is proportional to the influence function [4]. This function characterizes the bias
that a particular measurement has on the solution. To increase robustness and
reject outliers, the p-function must be more forgiving about outliers than the

classical quadratic norm; that is, it should increase less rapidly than 2.

4 Robust statistics and anisotropic diffusion

We now explore the relationship between robust statistics and anisotropic diffu-
sion by showing how to convert back and forth between the formulations. The
continuous form of the robust estimation problem can be posed as ming fn (|
VI ||)df2, where £2 is the domain of the image and where we have omitted o
for notational convenience. One way to minimize this energy is via gradient de-

scent: ﬂg%_%fl = div (p’(” VI ||)%) By defining g(z) = ﬂxﬂ, we obtain the

straightforward relation between image reconstruction via robust estimation and
image reconstruction via anisotropic diffusion.

Perona and Malik suggested two different edge stopping functions (g(-))
which can be viewed in the robust statistical framework by converting them
into their related p-functions. It is easy to show for example that the func-
tion g(z) = 1/(1+ 2?/K?) proposed by Perona and Malik corresponds to the
Lorentzian norm of robust statistics [2].

The above derivations demonstrate that anisotropic diffusion is the gradient
descent of an estimation problem with a familiar robust error norm. What’s the
advantage of knowing this connection? While the Lorentzian is more robust than
the quadratic norm, its influence does not descend all the way to zero. We can
choose a more “robust” norm from the robust statistics literature which does
descend to zero, such as Tukey’s biweight
p(z,0) = { ;—Z — g—i + % |z| <o ¥(z,0) = {:E(l —(2/0))? |z| < o,

3

a otherwise 0 otherwise.

A detailed comparison of these and other norms, showing the preference for
Tukey’s biweight, can be found in [2]. Figure 1 compares these functions and
the results of diffusing with each of them. The value of ¢ and A are estimated
automatically from the image gradients [2]. By examining the shape of the -
function, edges in the image can be interprated as occuring at locations where
the gradient is treated as an outlier.

It is interesting to note that common robust error norms have frequently been
proposed in the literature without mentioning the motivation from robust statis-
tics. For example, Rudin et al. [7] proposed a formulation that is equivalent to
using the L; norm. You ef al. [8] explored a variety of anisotropic diffusion equa-
tions and reported better results for some than for others. In addition to their
own explanation for this, their results are predicted, following the development
presented here, by the robustness of the various error norms they use.



Fig.1. Comparison of the Perona-Malik (Lorentzian) function and the
Tukey function. (a) original image; () comparison of Lorenizian and Tukey
p-functions; (b,f) after 100 iterations of the Lorentzian and Tukey formulations
respectively; (c,g) after 500 iterations; (d,h) edges obtained from the outliers after
500 tterations of Lorentzian and Tukey respectively.

The connection between anisotropic diffusion and robust statistics is further
exploited in [2] to take a diffusion equation with an edge stopping function g(z)
and convert it into an equivalent diffusion problem with an explicit “line process”.
Making the line process explicit allows constraints on the spatial coherence of
edges to be introduced into the diffusion equation.
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