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Abstract 

This paper examines the problem of estimating surjiace 
shape from texture in situations in which there are mul- 
tiple textures present due to texture discontinuities, oc- 
clusion, and pseudo-trarzspareizcy (fbr example look- 
ing through a picket fence ut u textured s u @ ~ e ) .  Pre- 
vious shupe-ji-om-texture methods that use changes in 
the spatial jrequency representution ofneighboring im- 
age patches u m m e  that only a single texture is present 
in each of the patches. We extend these upproaches to 
situations in which multiple textures muy be present. 
We provide a theoretical analysis ofthe multiple texture 
problem and the effect of texture discontinuities, occlu- 
sion, etc. on the spatial .frequency representution. We 
ulso present un algorithm, using robust mixture mod- 
els, jijr recovering multiple surjace shapes from oc- 
cluded texturex The methodpeforms well on real and 
synthetic inzages with results which ure comparable to 
that of shupefiom texture with only one texture. 

1 Introduction 
In this paper we explore the problem of estimating sur- 
face shape from texture in situations in which there are 
multiple textures present in a region of interest. Multi- 
ple textures due to texture discontinuities, occlusion, and 
pseudo-transparency pose problems that are closely related 
to the analogous problems in motion and stereo. Unlike 
recent work in stereo and motion, however, shape-from- 
texture methods typically assume that only a single texture 
is present in an area of interest. We relax this single rexture 
assumption and exploit techniques from the robust estima- 
tion of multiple motions to recover multiple surface shape 
estimates in the presence of multiple textured surfaces. 

Figure 1 shows examples multiple textures that occur in 
natural scenes; they are of four types: 

(a)  Texture Outlier: An image patch contains a brightness 
structure that is not consistent with the dominant texture. 

(b) Texture Discontinuify: Multiple textures within a sin- 
gle image region. 

(c) Fragmented Occlusion or Pseudo-Transparency: One 
surface is viewed through another surface such as a fence. 

c d 
Figure 1 : Multiple textured surfaces with occlusion. 

( d )  Transpareizt/Re~ected Textures: eg. viewing a tex- 
tured surface through glass which is also reflecting a tex- 
tured surface. Without additional cues such as motion, im- 
ages of this sort can be confusing to human observers. We 
leave this problem for future work. 

We take as our basic model the shape-from-texture meth- 
ods based on local distortions of the spatial frequency of the 
texture [5,  6,7, 81. Given the spatial frequency representa- 
tion of a texture in an image patch, we look at neighboring 
image patches and, in frequency domain, compute the affine 
texture distortion from one image patch to another. In cer- 
tain situations when multiple textures are present, the spa- 
tial frequency representation contains a (possibly weighted) 
sum of the significant frequency components corresponding 
to each of the different textures. We refer to multiple tex- 
tures of this form as “additive” in the frequency domain. 

In this additive case, a spectrogram containing peaks 
from multiple textures can be thought of as consisting of a 
number of “layers” where each layer corresponds to the spa- 
tial frequencies present in a single texture (see Figure 2). 
OUI goal is to compute a set of “weights” that assign spatial 
frequencies to layers and to estimate the affine transfonna- 
tioni for each layer. We also want the estimated transfonna- 
tionis to be robust to spurious peaks and noise in the spectro- 
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Textured Regions Spenmgrams Weights 

Figure 2: Additive texture split into layers. 

grams. When textures are additive in the frequency domain 
we can apply tools developed for dealing with multiple mo- 
tions to the new problem of multiple textures. 

Until recently, work in motion estimation has exploited 
a single motion assumption which states that within an ar- 
bitrary image region only a single image motion is present. 
This assumption is violated in common situations such as 
when the region contains transparency or occlusion. To re- 
lax this assumption, a number of approaches represent the 
motion of an image region as a set of layers. where the mo- 
tion of each layer is described by a low-order paramemc 
model (eg. affine) [I, 2, 4, 91. In particular. Jepson and 
Black [4] use an iterative algorithm (the EM-algorithm) to 
assign optical flow constraints to a set of layers and estimate 
the affine motion of each layer. In this paper we apply a sim- 
ilar approach to the problem of estimating the affine texture 
distortions in frequency domain. 

2 Shape-from-Texture 
We begin with the basic approach of Malik and Rosenholtz 
[SI which uses a modified version of windowed Fourier 
transform magnitude [7] as a measure of the statistics of the 
texture in an image region. They model the local texture 
distortioiz as a set of affine transforms. A,, between spectral 
estimates of an image patch and eight neighboring patches. 
They derived the relationship between these affine trans- 
forms and the local shape and orientation of the surface. The 
surface parameters of interest are the slant, 0,  the direction 
of tilt, t, (0, is the angle between this vector in the image 
plane and the x-axis), and the curvature parameters. 7-r ; . t .  

T,s,(,. and 1 . 7 .  Slant is the angle between the surface normal 
vector and the line of sight. Here h:, and fit, are the normal 
curvatures of the surface in the tilt direction (t) and the di- 
rection perpendicular to the tilt direction (b), respectively. 
The variable 7’ is the distance from the center of the view- 
ing sphere to the given point on the surface, and 7 is the 

“geodesic torsion” of the surface in the tilt direction. For the 
mathematical relationship between the local affine transfor- 
mations and the surface shape parameters see [SI. 

They use a differential method for finding these affine 
transforms which resembles differential methods used to 
compute optical flow. They assume that one spectrogram 
differs from another by only a 2 x 2 affine transformation 
A = I + AA. so F 2 ( 3 )  = Fl (AG) ,  where F; is the spec- 
trogram for a patch centered about the ith point, and 3 is the 
frequency. Then, for small AA. we can write 

F 2 ( 3 )  - Fl(G) GZ V21 o A A 3  ( 1 )  

where VF1 is the gradient of the spectrogram at the given 
frequency. Malik and Rosenholtz solve for AA using least 
squares. We will replace their estimation technique with a 
robust technique that can estimate multiple transformations 
simultaneously. 

Finally, Malik and Rosenholtz use non-linear minimiza- 
tion of the error between the empirical affine transforma- 
tions and the theoretical affine transformations (for a given 
shape estimate) to solve for shape and orientation estimates: 

.n 2 2 

X 2 ( ~ . 8 , . ’ f i t . ’ ~ ’ ~ , b . ’ 7 )  = CCC(a,(k.l) -A;(k.l))2 
i= l  k = l  1=1 

where ai( k .  I )  is F e  ( k .  l)th element of the theoretically 
predicted matrix A,i and is a function of the shape param- 
eters. and Ai (k . l )  is the ( k .  l)th element of the empirically 
measured affine transform matrix A i .  

3 Motivation and Theoretical Analysis 
The canonical example for shape from texture for multiple 
textures with occlusion is the fragmented occlusion exam- 
ple shown in Figure IC. We will refer to fragmented oc- 
clusion using terminology suggested by the example shown 
of a wood fence in front of a grassy field, though of course 
the analysis applies in general when one texture partially oc- 
cludes another. In space domain, we have 

image = wood texture x where the fence is 
+grass texture x where the fence isn‘t 

where wood texture is the texture actually on the boards 
of the fence and where the fence idisn’t are binary func- 
tions indicating the location of the boards of the fence 
and the spaces between them, respectively. Transforming 
into frequency domain, and letting W, G, F and F be the 
Fourier transforms of wood texture, grass texture, where 
the fence is and where the fence isn’t, respectively. we get 

F(image) = w * F + G * F. (2) 

At the scale shown in the figure, one really wants to know 
the orientation and shape of the fence and the orientation and 
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Figure 3: Texture with discontinuity (left) and with occlu- 
sion or outliers (right) can be thought of as special cases of 
the fragmented occlusion problem. 

shape of the grassy field, but not the shape and orientation 
of the individual boards that make up the fence. In this case, 
we are interested in when Equation 2 can be approximated 
by the “additive” equation 

( 3 )  &’(image) = k1F + k2G 

for some constants, X.1 and k 2 .  

Note that the cases of texture discontinuity and shape 
from texture with occlusion are basically subsets of this 
canonical example of fragmented occlusion as depicted in 
Figure 3. 

3.1 When is the “Additive” Approximation 
Valid? 

We need a model of the later processing in the Fourier do- 
main in order to define what we mean by a valid approx- 
imation. We will assume that all frequency components 
that have magnitude which is N or more times lower than 
the magnitude of the largest frequency component are sup- 
pressed. For this analysis, we will assume that the textures 
are periodic, so that they have well-defined peaks in fre- 
quency domain at frequencies wz,  for some i .  

Fragmented Occlusion. To simplify the situation some- 
what, we will assume that the wood texture, W, can be ap- 
proximated by only a dc component. In other words, we as- 
sume that the boards of the fence are all untextured or at least 
that any “wood grain” texture on the boards is relatively low 
power. 

Then, splitting F into its dc component and the remaining 
frequency components, we can rewrite Equation 2 as 

F(image) = k l ~ ( w )  + k 2 ~ ( w )  + k , ~ , ( w )  
w , f O  

where kl  and kz are constants representing the dc values of 
W and F, respectively. The first two terms are a weighted 
sum of F and G, as desired, but that we also have additional 

copies of the g y s  texture. G. convolved with the non-dc 
components of F. We ha\e written these additional copies 
as k ,Ci , (w) .  We not only have extra copies of the grass 
texture, but those extra copies effectively undergo differ- 
ent affine transforms because their affine transforms are cen- 
tered a bout the frequencies U,.  

Witlhout loss of generality. we assume that the highest 
peak in  frequency domain corresponds to the F texture. We 
refer to the dc component of any given texture, T ,  as T(0) .  
Then we write the highest peak in T ,  not counting the dc 
component, as T (  l), the next highest peak T(2) .  and so on. 

In order for the frequency components to be separable 
into two textures two conditions must be met. First the extra 
copies of the grass texture, G must be small enough that they 
are suppressed; i.e. the frequency components are lower 
than 1/N times the highest frequency component. This can 
be expressed as the condition that 

I W O )  - G(O)I/N > IG(1)I. (4) 

Intuitively. this first condition states that the contrast be- 
tween the wooden fence andthe grass (IW(O)-G(O)l)must 
be high enough compared to the contrast of the grass texture 

The second condition requires that we see enough fre- 
quency components in each texture to be able to estimate 
shape from texture. We must not suppress either the F tex- 
ture or the first copy of the G texture and there must be at 
least n peaks in the first copy of both textures in order to 
be able to perform shape from texture on both textures. If 
we are not to suppress the first copy of the grass texture, we 
must have the following condition: 

(IG( 1) I). 

I[W(O) - G(O)]F(1)J/N < lG(?))F(o)I. ( 5 )  

where IG(n)F(O)I is the magnitude of the 12th highest peak 
associated with the first copy of the grass texture. 

Intuitively. F(o) is the percentage of pixels in the image in 
which one can see the grass texture. Therefore, for the fence 
example, this second constraint is satisfied if there is enough 
space between the boards of the fence for us to see “enough” 
of the grass to recover shape from the grass texture. 

Texture Discontinuities and Outliers The cases of shape 
from texture in the presence of a discontinuity of texture and 
in the presence of an occluder tum out to be much simpler. 
This is because both the discontinuity and the occluder tend 
to be low frequency; otherwise we would have the previ- 
ous case of fragmented occlusion. Therefore, F and f” are 
each a single low frequency ”blob” in frequency domain, 
and, Equation 2 becomes a blurred version of the desired 
klW -+ kzG. When this additive approximation holds we 
should be able to separate the two textures in frequency do- 
main and perform the shape from texture on both textured 
surfaces. 
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4 Estimating Multiple Affine 

With a single texture we can robustly recover the affine 
transformation, AA, between neighboring spectrograms us- 
ing the differential method described in [7]. Taking Equa- 
tion (1) as a constraint. we solve for the affine transfonna- 
tion AA between spectrograms Fz and F1 by minimizing 

E/i(O‘F, o A A 3  - (F2(G) - F1(3)).0). 

Transformations 

(6)  
W 

where p is some robust error norm; for example 

(7) 

wkich is used in [I]. As the magnitudes of residuals 
D F 1 ( 3 ) T o A A 3 -  (F2((3) -F1(3)) growbeyondapoint 
their influence on the solution begins to decrease and the 
value of p ( . )  approaches a constant while the weight goes 
to zero. 

To estimate the affine transformations for multiple sur- 
faces we must do two things: (1) we must decide which fre- 
quencies (3 correspond to which texture, and (2) given this 
correspondence estimate the transformation for each tex- 
ture. This first step can be thought of as assigning frequen- 
cies to a set of layers corresponding to the textures. To esti- 
mate multiple affine transformations AA, we minimize 

W 

for each AA, where m j , ,  is a weight that encodes the like- 
iihood that the frequency 3 belongs to the layer / .  The 
weights are defined in terms of a robust error norm 

The objective function (8) is minimized in two stages. 
First we solve for the weights, inj.;. in closed form using 
Equation (9) 

n 
/ l / J . ,  = 

(r + ( V p l ( ~ 2 ) ~  o AA,; - (F2(3 )  - F1(3)))2)2. 

After updating all the weights, we can update the estimates 
of AA, using weighted least squares or gradient descent. 

A frequency (3 may be shared by multiple layers. but if 
there are no outliers present, each frequency must belong to 
some layer. This can be expressed as the following mixture 
constru in  t 

Dealing with Outliers. The mixture constraint assumes 
that every frequency belongs to some layer or is shared by 
multiple layers. It does not account for outliers which be- 
long to no layer. To cope with outliers, we follow the ap- 
proach in [3] and introduce a new outlier layer that does not 
Correspond to any affine transformation and is not used in 
the minimization of Equation (8) but is used when enforcing 
the mixture constraint. If we are estimating 1) affine trans- 
formations then the normalization in Equation ( I  0) is com- 
puted over the / I  + 1 layers. The initial value for the 7r/j.,L+l 
is taken to be the weight given to the largest expected out- 
lier. 

The values of /?)J.7t+1 are updated only when normaliz- 
ing the weights. If a frequency d does not correspond to any 
affine transformation AA, then it will receive low weights 
and the normalization will shift weight to the outlier layer 
and ?71 j ,71+ l  will increase. 

Implementation. In our current implementation we as- 
sume that the number of layers is known. To estimate 
the affine transformation of each layer we first construct a 
Gaussian pyramid representation of the spectrograms under 
consideration. The affine transformation is computed at a 
coarse level and then, at the next finer level, the estimated 
transformation is used to register the two patches by warp- 
ing one towards the other. This process is repeated down to 
the finest level in the pyramid while the transformation is 
updated at each stage. 

Within each level of the pyramid the affine transforma- 
tion is estimated using a gradient descent method embedded 
within a continuation strategy in which the value of CT begins 
at a high value and is gradually lowered [l]. The effect of 
this process is to gradually reduce the influence of frequen- 
cies which are treated as outliers with respect to one or all 
of the layers. 

Recovering Multiple Shapes. In the case of a single tex- 
ture. Malik and Rosenholtz [7] recover surface shape by 
computing the tramformations between a single patch and 
eight neighboring patches. In the case of multiple textures, 
each pair of image patches gives rise to 77 affine transfor- 
mations. To estimate multiple shapes from these multi- 
ple transformations we need to know which transformations 
correspond to which of the 7 )  surfaces. We group the indi- 
vidual layers recovered from each of the eight neighboring 
patches into a single set of layers using a simple match met- 
ric that takes into account where the weights of the layers 
agree and where they disagree. Once the correspondence 
between the layers of the different patches is known. we use 
the shape estimation procedure described in Section 2 with 
the affine transformations corresponding to each set of lay- 
ers to recover the multiple surface shapes. 
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Figure 6:  Fragmented Occlusion. Both the center region 
and the surrounding regions co,ntain multiple textures. 

Surface 
Top(Truc) 

Bottom (Truc) 

Bottom (!AL.) 
TOP (Est.) 1 

Figure 4: Texture 
ample patch locati 
patch. (h)  center 1( 

blant tilt r k +  rAl, r-r 

70 -90 0 0 0 
70 -90 0 0 0 

60.0 -93.7 -0.04 -0.06 -0.1 1 
65.4 -86.7 -0.52 -0.16 -0.01 

c 
Discontinuity. Left: Image showing ex- 
,onS. Right, Spectrograms: ( U )  upper left 
:ft patch. (c) lower right patch. 

top k f t  bottom right 
Figure 5: Discontinuity example. Weights estimated for 
two of the eight patches. 

5 Results 

We present a number of results on natural and synthetic 
images that indicate the accuracy of the recovered sur- 
face shapes are comparable to those reported by Malik and 
Rosenholtz [8] for shape from texture with only one texture. 

5.1 Texture Discontinuities 

Figure 4 illustrates a synthetic texture discontinuity. Nine 
patches (128 x 128 pixels) are extracted with the central 
patch centered on the texture boundary. The neighboring 
patches are offset from the center by 64 pixels. A two level 
Gaussian pyramid was used with 40 iterations of the contin- 
uation method at each level. The value of a began at 70.0 
and was lowered by a factor of 0.9 after each iteration to a 
minimum of 35.0. Peaks with a height lower than 63.0 were 
ignored. 

Figure 5 shows the recovered weights for the patches (a 
and c) in Figure 4. The two pattems corresponding to the 
different textures are clearly visible. Using the recovered 
affine transformations between the center patch and each of 
the eight neighboring patches we recover the following sur- 
face shape estimates for the top and bottom surfaces: 

5.2 Synthetic Fence Example 

The next experiment considers the fragmented occlusion 
case in Figure 6 in which we have a “fence” pattern in front 
of a textured surface (the “grass”). The patches are taken 
to be 128 x 128 with the neighboring patches offset from 
the center patch by 32 pixels. A four level Gaussian pyra- 
mid was used with 20 iterations of the continuation method 
at each level. The value of a began at 60.0 and was lowered 
by a factor of 0.95 after each iteration to a minimum of 20.0. 
Peaks with a height lower than 90.0 were ignored. 

Figure 7 shows the averaged weights from all the layers 
corresponding to one or the other surface. Notice that the 
power in the “fence” texture lies along a line in frequency 
domain. This means that the estimation of the affine trans- 
fomiations for the fence texture will be underconstrained. 
This has been referred to as the texture aperture effect [SI. 

The true and estimated parameters for the fence example 
are: 



Figure 8: Natural image of a ground plane viewed through 
Venetian blinds. 

U b C 
Figure 9: Venetian Blind Example. (a )  Center spectrogram. 
Normalized weights corresponding to: (h) the foreground 
(blinds). (c) the background (ground plane). 

“Fcncc”(True) I 0 I undcf I 0 1 0 1 0 
“Grash”(Est.) I 67.9 I -185.4 I -0.15 1 -0.05 I -0.04 

I “Fencr”iEst.) 1 X.7 I 38.6 1 -7.14 1 -4.54 I 16.7 1 
Notice that the shape of the background textured surface 

has been recovered accurately. For the fence. the slant of 8.7 
is fairly accurate while the true tilt is undefinedfor a slant of 
0 degrees. The high curvature terms are due to the aperture 
effect. In general one should detect when the solution is ill- 
conditioned due to the texture aperture effect and indicate 
which results are reliable and which are not. A solution to 
this problem is beyond the scope of this paper. 

5.3 Seeing Through Blinds 
We now consider a natural scene exhibiting fragmented 
occlusion. Figure 8 shows a textured ground plane (the 
“grass”) viewed through Venetian blinds (the “fence”). The 
patches are taken to be 128 x 128 with the neighboring 
patches offset from the center patch by 64 pixels. Exactly 
the same parameters were used as were used in the previous 
synthetic example. 

Figure 9 shows the spectrograms and the recovered 
weights which are averaged across the corresponding lay- 
ers of all the patches. Notice that the blinds. once again. suf- 
fer from the texture aperture problem while the peaks corre- 
sponding to the ground-plane texture are clearly recovered. 

I I FGtimatrrl I 
The recovered surface parameters are: 

I ._ 
Surl’acc I slant I tilt I T k t  I TA,!, I TT 

I “Grass“ I 58.3 I -87.4 I 0.02 I 0.11 I 0.09 1 
“Fence” 1 16.9 I -147.7 1 2.28 I 2.38 I 10.99 

While we do not have ground truth for this image. the 
“grass” texture appears to accurately reflect the orientation 

of the ground plane. Likewise the slant of the blinds ap- 
pears to be well recovered but due to the aperture problem 
we cannot hope to recover the full orientation and shape ac- 
curately. 

6 Conclusions 
Previous work in shape-from-texture assumes that, within 
the region of interest. there is only one texture present, and 
no occluders. But it is quite common in natural scenes 
to see one textured surface through another, as in viewing 
our canonical example of a grassy field through a fence. 
We have shown theoretically that for a large class of prob- 
lems, the shape from texture problem for multiple textures 
and occlusion is analogous to robust estimation of structure 
from motion. We have presented a robust shape from texture 
method based on a combination of Malik and Rosenholtz’ 
[SI affine model of shape from texture and previous work 
in robust affine motion estimation [ l ,  41. and have demon- 
strated results on both synthetic and natural images which 
achieve the accuracy of methods that estimate shape from 
texture with only one texture. 
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