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Abstract

In scenes containing specular objects, the image motion
observed by a moving camera may be an intermixed com-
bination of optical flow resulting from diffuse reflectance
(diffuse flow) and specular reflection (specular flow). Here,
with few assumptions, we formalize the notion of specular
flow, show how it relates to the 3D structure of the world,
and develop an algorithm for estimating scene structure
from 2D image motion. Unlike previous work on isolated
specular highlights we use two image frames and estimate
the semi-dense flow arising from the specular reflections of
textured scenes. We parametrically model the image motion
of a quadratic surface patch viewed from a moving camera.
The flow is modeled as a probabilistic mixture of diffuse
and specular components and the 3D shape is recovered
using an Expectation-Maximization algorithm. Rather than
treating specular reflections as noise to be removed or ig-
nored, we show that the specular flow provides additional
constraints on scene geometry that improve estimation of
3D structure when compared with reconstruction from dif-
fuse flow alone. We demonstrate this for a set of synthetic
and real sequences of mixed specular-diffuse objects.

1. Introduction

We address the problem of recovering the image motion
and 3D shape of a specular surface viewed by a moving
camera. Previous work on this topic has focused on the
shape or motion of isolated specular features or specular
highlights. While local shape information can be recovered
from both static [12] and moving highlights [19], these rep-
resent a subset of the general class of specular reflections.
More generally, a specular surface may reflect a distorted
view of the illumination field surrounding it. In this case
the specular reflections may be “dense” or “semi-dense” in
that they appear over a relatively large area. When the cam-
era or scene is in motion, these specular reflections give rise
to 2D image motion which we call specular flow [19, 30].
In this paper we formalize the notion of specular flow, relate
it mathematically to the 3D structure of the scene and com-
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Figure 1. Moving surface with diffuse markings and specular re-
flections from an unknown textured scene. Our method relates the
3D surface shape and camera motion to the 2D image motion of
diffuse and specular pixels. The algorithm automatically recovers
the surface shape and flow and probabilistically classifies pixels
as diffuse or specular. (a) One image from a sequence. (b) Re-
covered diffuse flow (magnified) corresponding to the motion of
the surface texture. (c) Recovered specular flow (magnified) cor-
responding to the motion of the specular texture.

bine diffuse and specular flow to estimate surface curvature.

Consider the image in Figure 1 of a reflective, textured
surface viewed from a moving camera. The motion of the
surface texture gives rise to the diffuse flow, the mathemat-
ics of which is well understood. The reflected scene on the
other hand gives rise to specular image motion where the
relationship to 3D structure is significantly more complex.
Our key insight is that the spatial pattern of specular flow
from a textured scene provides rich information that can
constrain estimates of surface shape. Consequently, rather
than treating specular reflections as “noise” to be removed,
we treat them as a rich signal which provides information
about 3D shape. It is worth emphasizing that, in contrast
to prior work, we are not focusing on the motion of specu-
lar highlights but rather on the spatially extended flow fields
arising from the reflection of textured scenes.

The paper makes a number of contributions that go be-
yond the state of the art. (1) We relate specular flow to 3D
shape and camera motion. Solving for the specular image
motion given shape and camera motion is a difficult prob-
lem and we exploit an approximation that makes the estima-
tion of specular flow tractable. (2) We exploit this formula-
tion to recover optical flow using a direct method. This is
an extension of layered parametric motion estimation meth-



ods [24] and in that spirit we exploit a probabilistic mix-
ture model formulation and solve for the motion using an
Expectation-Maximization (EM) algorithm. (3) In solving
for the image motion the mixture model provides a classi-
fication of the scene pixels as specular or diffuse. (4) The
EM algorithm is automatically initialized using an estimate
of 3D shape obtained from a dense optical flow field that
contains both diffuse and specular flow. To do so we exploit
the epipolar constraint to identify flow vectors consistent
with the diffuse flow and use these to obtain an initial es-
timate of 3D structure. (5) We show that 2-frame specular
flow constrains the 3D shape and we provide the first for-
mal characterization of these constraints. These constraints
are, in general, different from the diffuse motion constraints
hence combining diffuse and specular flowmay improve the
accuracy of shape estimation.
Our technique makes weak assumptions compared with

previous work. In particular we do not need to know the
illumination field or the illumination direction. Like pre-
vious methods we assume known camera motion. Further-
more, frame-to-frame camera motions are assumed to be
small. We assume surfaces have distinct regions of specu-
lar and diffuse reflectance and that their shape can be ap-
proximated by a smooth implicit function or by piecewise
quadratic functions [3]. The resulting theory of specular
flow extends the prior art to spatially extended, unknown
light sources and leads to the first complete algorithm to
exploit specular flow for shape recovery.

2. Previous work

The use of specular reflections in estimating scene struc-
ture has a long history in computer vision. Many tech-
niques recover information about surface shape by assum-
ing knowledge of the light source shape, its position, and/or
its orientation [12, 13, 16, 22, 23]; the illumination is treated
as a form of structured light. In general however, we may
not know the structure of the illumination field, or even the
direction of illumination. In this case a single image pro-
vides little information about the surface shape.
Alternatively, many techniques for estimating structure

treat specular reflections as violations of Lambertian re-
flectance, detect them, and remove them from consideration
[14, 15, 28]. Treating specular reflections as noise how-
ever fails to exploit the relationship between specular mo-
tion and surface shape. Methods that do exploit specular
motion have typically exploited specular highlights (points
or localized regions of specular reflection) and their motion
over many frames [19, 27].
2-frames and a known light source. Early specular re-

construction techniques assumed the illuminant was known
and used 2-frames with known camera motion (i.e., specular
stereo). They showed that the motion of a specular highlight
can be combined with the known depth of a nearby point to

obtain constraints on local surface curvature [5, 6, 31]. Fur-
thermore, the convexity/concavity of the surface can be de-
termined using the relative motion between a specular high-
light and a nearby surface point [31].
Extended temporal constraints. It is possible to re-

cover parts of the surface geometry by tracking a single
specular feature over a long series of frames with known
camera motion [19]. But in order to uniquely recover the
surface profile along the trajectory, the feature needs to be
tracked to and from occlusion boundaries. This only pro-
vides the surface geometry along the path of the feature.
Optical flow and specular reflections. Many methods

have looked at the estimation of optical flow with reflective
or transparent surfaces where the traditional brightness con-
stancy assumption is violated. [2, 4, 11, 21, 25, 29]. These
methods however have focused on the 2D motion problem
and have not looked at using specular motion to estimate
3D shape. Waldon and Dyer [30] introduced the notion of
the “reflection flow field” (what we call specular flow) in
the case of a stationary camera and moving specular ob-
ject. They extend the brightness constancy assumption to
include two terms: one for diffuse reflectance and one for
specular reflectance. They show that the specular flow can
dominate the diffuse flow depending on the surface curva-
ture and point out that in such cases the specular flow can be
recovered using standard gradient-based optical flow tech-
niques, but did not couple it to the shape of the surface.
In contrast to previous work, we formulate a parametric

model of specular flow that directly relates image motion to
3D shape. Rather than focusing on specular highlights over
many frames we use the spatially extended specular flow of
a textured scene between two frames to constrain surface
shape. Finally our only assumption about the illumination
field is that it is far from the reflecting surface.

3. Parametric models of diffuse and specular
motion

We derive a parametric model of diffuse and specular
image motion between two image frames as a function of
camera motion and the shape of the viewed object. We as-
sume that the surface is given by a known, twice differen-
tiable implicit function g(x ∈ R

3; θ) = 0, where θ are
the parameters of the implicit representation. Furthermore,
we assume that both the internal and the external camera
parameters are known. We denote the fixed internal param-
eters of the camera as K ∈ R

3×3; the external parameters
for frame i are denoted as (Ri, ti), where Ri ∈ R

3×3 is
the camera rotation and ti ∈ R

3 is the camera translation.
The resulting projection matrix for frame i is then written
as Pi = K · (Ri, ti).
We make the important assumption that the features in

the illumination field (e.g. traditional light sources as well as
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Figure 2. A specular object reflects a feature from an illumination
field I at infinity in direction s. The object is viewed from two
different viewpoints p and p′. The feature is reflected from the
surface at points x and x′ in two different frames with the corre-
sponding surface normals n and n′. The vectors d and d′ specify
the direction from the reflection point to the respective camera.

illuminated objects in the surroundings) are sufficiently far
away so that the lighting direction that induces a particular
specular feature in multiple frames remains approximately
constant across frames. This is illustrated in Figure 2. The
assumption of distant illumination allows us to model the
specular image motion without making additional assump-
tions about the scene surrounding the viewed object.

3.1. Diffuse motion

Given the parametric surface as well as the camera pa-
rameters, we compute the parametric motion field that cor-
responds to motion of diffuse surface features, which we
call diffuse flow. For every pixel u = (u1, u2) in frame
i, we identify a ray along which the corresponding diffuse
surface feature must lie. This ray is given as

r(λ) = p + λ · d, (1)

where p = −RT
i ti is the camera center and d =

−RT
i K

−1(u1, u2, 1)T is the ray direction from the surface
toward the viewpoint. To find the surface point x in 3D
that projects to u we determine the intersection of the ray
with the implicit surface so that x = r(λ) and g(x; θ) = 0.
In case of multiple intersections, the surface feature cor-
responds to the intersection that is closest to the camera.
Given the surface point x, it can be projected into another
view (assuming that it is visible), e.g. for frame i + 1 the
image location is given by u′ = (y1/y3, y2/y3) where
y = Pi+1x. The diffuse flow from frame i to frame
i + 1 is finally given as the difference in image coordinates:
wD(u) = u′ − u.

3.2. Specular motion

Computing the specular motion is unfortunately not as
straightforward as the diffuse case, even with the assump-

tion that the illumination field is at infinity. To compute the
specular motion for a pixel u, we first identify the 3D sur-
face point x that reflects a specular feature. As for diffuse
motion, we find x by intersecting the viewing ray with the
implicit shape. In case of specular reflection the observed
feature comes from the unknown, distant illumination field
and not directly from the surface of the object. This means
that to compute the image motion of the feature, we first
have to find the surface point x′ that reflects the same spec-
ular feature in frame i + 1 in which the camera is centered
at p′. This is illustrated in Figure 2. To find x′ it is helpful
to define the following: The surface normal at point x is
given as the gradient of the implicit surface description, i.e.
n(x) = ∇g(x). We write the unit normal as n̂ = n/||n||
and the unit ray direction (from above) as d̂ = d/||d||.
From the law of reflection, the direction s of the specular
feature on the illumination field is

s = 2d̂Tn̂ · n̂ − d̂. (2)

Based on our assumption of distant illumination, the same
illumination direction gives rise to the specular feature in
frame i + 1. For the purpose of finding x′ it will be easier
to restate the law of reflection, in particular that the normal
direction bisects the viewing and the lighting directions:

d̂′ + s = ñ′ = ν · n′, (3)

where ν is a scaling factor. Since x′ is unknown at this
point, we rewrite this as

p′ − x′

||p′ − x′|| + s = ν · ∇g(x′). (4)

Determining the reflection point amounts to finding an x′

so that (4) holds for some ν under the constraint that x′ is
on the surface, i.e. g(x′; θ) = 0. Even for simple implicit
surfaces such as a sphere this is difficult to do analytically.
For finite distance light sources this problem is known as
Alhazen’s Billiard problem, a classical problem in mathe-
matics first posed by Ptolemy [18, 26].
Even for a circle in 2D the problem is hard: Given a cam-

era at a point a and a light source at b find the points on the
circle which reflect a ray from a into b. There are in gen-
eral 4 such points; at most two actually amount to reflection
rather than refraction [26]. For objects more complex than a
sphere, no closed form solution exists [10]. However, Chen
and Arvo [10] propose a local perturbation method that de-
scribes the differential behavior of specularities given either
camera or light source motion. This has been exploited in
computer graphics to render specular reflections efficiently;
we use their method to approximate the specular flow.
The method is based on the path that the reflection point

takes on the surface as the camera moves from p to p′.
This path can be described using a smooth path function



fθ : R
3 → R

3 that assigns a surface point for each cam-
era location (given the surface parameters θ). It holds that
fθ(p) = x and fθ(p′) = x′. While evaluating fθ(p′)
amounts to the same, difficult problem as above, here we
perform a Taylor approximation of the path function around
p based on the assumption that p and p′ are close:

x′ = fθ(p′) (5)

≈ fθ(p) +
∂fθ(p)

∂p
· (p′ − p) (6)

≈ x +
∂fθ(p)

∂p
· (p′ − p), (7)

where ∂fθ(p)
∂p is called the path Jacobian, which in contrast

to fθ(p′) itself can be expressed in closed form. We omit a
detailed derivation of the path Jacobian as it is almost iden-
tical to the derivation in [10]. The main difference is that we
assume the illumination field to be infinitely far away, which
actually simplifies the derivation and makes is possible to
compute the path Jacobian without knowing the position of
the illumination. This sets the proposed method apart from
previous work that often made more restrictive assumptions
about the illumination. It is important to note that the only
other requirement for computing the Jacobian is that we can
evaluate the gradient and the Hessian of the implicit surface
equation. This will hold for quadratic surfaces as consid-
ered later, but the method extends to more flexible surface
representations, such as the ones used in [27].
Summarizing the parametric model of specular flow:

Given a pixel u in frame i, find the associated surface point
x. Then approximately find the nearby surface point x′ that
causes the same specular feature to appear in frame i+1 us-
ing the path perturbation method described above. The sur-
face point x′ can be projected into the view at frame i + 1,
to give u′ = (y1/y3, y2/y3) where y = Pi+1x′. The spec-
ular flow for distant illumination from frame i to frame i+1
with small camera motion is finally given as the difference
in image coordinates: wS(u) = u′ − u.

4. Properties of specular flow

We have described how specular flow relates to the 3D
geometry of the scene and to the camera motion under the
assumption of distant illumination and small camera mo-
tion. Now we show that the observed specular flow can be
used to constrain the geometry of an unknown object and
that it provides additional constraints on surface shape not
present in the diffuse flow. For clarity and brevity of exposi-
tion we present the insights in an informal way; the formal
expression of these is straightforward.

Definition 1. A specular feature viewed from two different
viewpoints is said to fulfill theweak specular constraint, if
the object causing the specular feature is infinitely far away

from the specular surface. In this case the reflected feature
appears under the same illumination direction at any point
on the surface.

Observation 1. Assume that a single specular feature is ob-
served from two different viewing directions. In general the
feature will be seen reflected from two surface points. Then
the weak specular constraint constrains two of the four pa-
rameters of the associated surface normals.

Proof. From the law of reflection we know that for each of
the two viewpoints the viewing direction, the surface nor-
mal, and the lighting direction all lie in a plane. Because
the viewpoint and the viewing direction lie in this plane,
we can parametrize the plane for each viewpoint using a
single parameter, i.e. the rotation angle around the viewing
ray. By virtue of the weak specular constraint, the lighting
direction has to be identical in both cases, so the only ad-
missible lighting direction is given as the intersection of the
two planes. The planes intersect because we assumed the
viewing directions to differ. Once the lighting direction is
known, the two surface normals are given as the vectors that
bisect the lighting direction and each viewing direction.

If we interpret the motion of a specular feature as aris-
ing from the motion of a diffuse surface marking on a rigid
object, then this virtual feature will generally appear at an
incorrect depth. The distance of the feature to the actual
object surface depends on the surface curvature as well as
the viewing angle [5, 19, 28]. Specular reflections from
convex surfaces appear behind the surface; for concave sur-
faces they lie in front. Consider a simple case where light
is reflected off a spherical mirror so that it appears to come
from the center of the sphere. As the camera motion goes
to zero the location of the virtual feature converges to the
point half-way between the surface and the center of the
sphere [19, 28].
To understand how diffuse and specular motion constrain

the surface geometry, we perform a simple experiment re-
lating the depth and curvature of a spherical surface patch to
the camera motion. For known camera motion and known
parameters of the surface we can compute the parametric
flow as above. We now vary the distance of the patch to the
camera as well as the curvature of the patch and compute the
average angular error [1] between the associated image mo-
tion and the true image motion. Figure 3 shows the results
for diffuse and specular flow. The left plot shows that, for
small camera motions, diffuse flow constrains the depth of
the patch much better than the curvature. The specular flow
on the other hand provides a different, and complimentary,
constraint that comes from the fact that the virtual depth of
a specular feature is a function of both the depth and cur-
vature of the surface. This motivates using the combination
of diffuse and specular constraints for recovering surface
geometry of mixed diffuse/specular surfaces.
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Figure 3. Geometrical constraints of diffuse and specular flow: Av-
erage angular error of parametric flow for a spherical surface patch
compared to the true parametric flow (depth = 6, curvature =
0.25). (left) Diffuse flow. (right) Specular flow.

5. Mixture model: diffuse and specular flow

There are a number of ways to exploit specular flow to
recover surface shape. One might first compute dense op-
tical flow and then classify the flow vectors as diffuse or
specular using the epipolar constraint [28]. While diffuse
motion (of rigid objects) obeys the epipolar geometry, the
image motion of specular features does not always obey the
epipolar constraint. Using the classified flow vectors we
could find the surface parameters by matching the paramet-
ric motions derived in Section 3 with the measured diffuse
and specular flow. This method has the disadvantage that
the classification of flow vectors into specular and diffuse is
not always reliable. As [28] notes, the amount of epipolar
deviation is dependent on the curvature of the surface. Ad-
ditionally, the dense estimation of optical flow in the case
of mixed diffuse and specular reflection is challenging.
We follow a different approach here and develop a direct

method for recovering the surface geometry. In particular,
we propose a mixture model of parametric motions, where
each pixel can either be diffuse, specular, or belong to an
outlier class. The mixture model extends previous work on
multiple parametric motions [24]. In the following we as-
sume that the external camera parameters have been deter-
mined ahead of time through a separate process.

5.1. Model formulation

We formulate the problem of recovering surface shape
from an image pair as one of probabilistic inference. In par-
ticular, we find the parameters of the surface shape θ that
maximize the likelihood of the image Oi given the subse-
quent frameOi+1:

θ∗ = arg max
θ

p(Oi |Oi+1, θ). (8)

As in [24] we assume conditional independence of the pix-
els in frame i so that we can rewrite (8) using

p(Oi |Oi+1, θ) =
∏

u

p(Oi(u) |Oi+1, θ), (9)

where Oi(u) is the grey-value of image Oi at pixel u and
we take the product over all the pixels u. Furthermore, we

assume that every pixel can be either diffuse, specular, or
it can be an outlier, which we formulate using the per-pixel
mixture model

p(Oi(u) |Oi+1, θ) = mD · pD(Oi(u) |Oi+1, θ)+
mS · pS(Oi(u) |Oi+1, θ)+
mO · pO.

(10)

mD, mS, and mO are the a-priori mixture weights of the
diffuse, specular, and outlier components; pD and pS are the
component likelihoods for diffuse and specular pixels, and
pO is a fixed outlier probability. In order to specify the com-
ponent likelihoods, we denote the parametric diffuse flow
for a surface with parameters θ at pixel u as wD(u) and
the specular flow as wS(u). Assuming Gaussian noise, the
component likelihood for specular flow is written as

pS(Oi(u) |Oi+1, θ) =
N (Oi(u); Oi+1(u + wS(u)), σ); (11)

the diffuse component likelihood is defined analogously.
Note that, unlike previous mixture model approaches we

do not assume a linearized brightness constancy assump-
tion. Instead we adopt a warping approach (see e.g. [9]),
which assumes Oi(u) = Oi+1(u + wS(u)). This is more
appropriate for specular motions where the image motion
may be large and a linearization of the brightness constancy
assumption would be inappropriate.

5.2. Inference algorithm

Inference of the model parameters is performed using the
Expectation-Maximization (EM) algorithm [17], which al-
ternates between probabilistically assigning pixels to causes
(specular flow, diffuse flow, or outlier) and maximizing the
expected log-likelihood of the model parameters given the
assignments.
We omit the detailed derivation here, as our model is

similar to other mixture models of parametric motion [24].
It is interesting though to note that the E-step yields own-
ership weights that segment pixels as being consistent with
either diffuse or specular motion. If we denote the compo-
nents as c ∈ C = {S,D,O}, the ownership weights for a
pixel u are given as

π(c,u; Oi,Oi+1, θ) =
mc · pc(Oi(u) |Oi+1, θ)∑

c′∈C mc′ · pc′(Oi(u) |Oi+1, θ)
.

To simplify inference, we will keep the prior probabilities
over the mixture components mc as well as the component
variance σ fixed (mc = 1/|C| and σ = 10). We should
also point out that maximizing the expected likelihood in
the M-step is difficult given the developed model because
the specular motion depends on the surface parameters in
highly nonlinear ways. With no closed form solution for
the model parameters θ we perform a local optimization of
the expected likelihood.
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Figure 4. Reconstruction from a synthetic specular/diffuse se-
quence. (a) Example frame from a pair. (b) Ownership weights
for reconstructed diffuse motion. (c) Ownership weights for re-
constructed specular motion. (d) Outlier ownerships weights cor-
responding to boundary between specular and diffuse regions. (e)
Diffuse flow (magnified). (f) Specular flow (magnified).

6. Experimental evaluation

We evaluate the performance of surface reconstruction
using specular flow with synthetic and real image sequences
for which we know the ground truth. In these experiments,
we restrict the surface geometry to spherical patches, but
use both convex and concave shapes. The implicit surface
description in this case is given as

g(x; θ) = ||x − c||2 − r2 = 0, (12)

where the reconstruction needs to determine the center and
radius of the sphere θ = {c, r}. It is worth noting that the
method can be applied in local image patches and does not
exploit the outline of the object being viewed.

6.1. Experiments with synthetic data

We rendered 20 image sequences (100 × 100 pixels) of
spherical surface patches with various positions and radii;
10 of them convex and 10 concave. The camera motion is a
random rotation around a point near the sphere with a uni-
formly random rotation axis and a small, random angle. The
surface patches exhibit contiguous regions of either diffuse
reflectance or specular reflection, which are determined by
a random binary surface texture. Both diffuse and specular
parts are textured with natural textures. Figure 4 shows such
a synthetic frame. To remove a potential bias from the out-
line of the sphere, the patches are chosen so that the images
show only a part of the full sphere. Furthermore, the mo-
tion in a boundary of 5 pixels around the edges of the image
is ignored to avoid effects from occlusion and disocclusion.
Boundary pixels are forced to be explained by the outlier

layer and thus do not affect the estimation. Nevertheless,
occlusion and disocclusion may still happen between the
various specular and diffuse regions since they each have
different apparent motions; this is automatically dealt with
by the outlier component (Fig. 4 (d)).
The EM algorithm is initialized by perturbing the ground

truth with random noise. The surface shape is then recon-
structed from diffuse and specular motion using 25 itera-
tions of EM as described above. Figure 4 shows the own-
ership weights (b – d) and parametric flow fields (e – f) as-
sociated with one of the reconstructed shapes. For the own-
ership weights, white/black indicates high/low ownership
respectively. Note that gray ownership weights correspond
to homogeneous regions where both specular and diffuse
motion explain the image data.
To determine whether the specular flow helps constrain

surface reconstruction we compared against a similar mix-
ture model with only 2 classes: diffuse motion and an out-
lier class which can account for parts of the image that are
not consistent with the diffuse motion. To measure the re-
construction accuracy we computed the error in locating the
sphere center and in determining the radius. The median er-
ror over all 20 shapes using the combined specular/diffuse
model was 0.074 units for the center, and 0.019 units for
the radius; for the purely diffuse model, the error was 1.03
and 0.90 units respectively. The difference of the medians
is statistically significant according to a rank sum test; the
p-values are 1.9·10−7 for the center and 9.1·10−8 for the ra-
dius. The diffuse model was sometimes severely affected by
the specular motion and converged to solutions far from the
true solution. We conclude that for scenes containing sig-
nificant specular and diffuse motions, the combined model
significantly improves the accuracy of surface recovery.

6.2. Reconstruction of a shiny ball

To demonstrate the applicability to real imagery, we cap-
tured a shiny ball from 6 different views and reconstructed
its position and radius from two of the views. The ball as
shown in Figure 1 is highly reflective but also exhibits dif-
fuse reflectance corresponding to surface paint. We cap-
tured the ball in a textured environment using a standard
digital camera, which was calibrated using the software
from [8]. A calibration grid was captured alongside the
shiny ball in order to estimate the external parameters of
the camera, which was done using the same software. We
manually determined the center of the ball in the 6 views
and used this to estimate the ground truth position of the
ball’s center in 3D. The radius of the ball was measured by
hand (45mm). To avoid a potential bias from the outline of
the sphere, we reconstructed the object only from a masked
portion of the image as shown in Figure 5. Pixels outside of
the masked region are again forced to be explained by the
outlier layer.



Figure 5. Specular reconstruction of a real, reflective object. (top)
Two views of a specular ball viewed through a circular aperture.
Note how the surface paint and the reflections move differently.
(bottom)Ownership weights of the diffuse flow (left) and the spec-
ular flow (right) computed from the reconstructed shape.

To automatically initialize EM with approximate surface
geometry, we first compute dense optical flow between the
image pair using a standard method [4]. Given the known
camera geometry, we classify the flow vectors into specular
or diffuse based on the epipolar deviation [28] and reject the
putative specular flow vectors with large epipolar deviation
from consideration during initialization. From the camera
motion and diffuse flow we then estimate the depth of the
diffuse surface points. Finally we fit the spherical surface
that minimizes the distance to the estimated depth values.
Reconstruction from the initialization was performed as

for the synthetic experiments. The reconstruction error of
the initialization alone was 15.1mm for the center of the
sphere, and 5.1mm for the radius. Running the EM algo-
rithm based on the parametric mixture of specular and dif-
fuse flow lead to substantially improved results: The error
for the center and radius was 2.8mm and 0.4mm, respec-
tively. Figure 5 shows the ownership weights as determined
by the EM algorithm and Figure 1 shows the parametric
diffuse and specular flow fields for the reconstructed shape.
We can clearly see that the diffuse layer picks up diffuse
features such as the outline of the surface paint, and that
the specular flow brings out reflected structures such as the
checkerboard, ceiling lamps etc. Parts that do not exhibit
any significant spatial structure are assigned equal proba-
bility for either being specular or diffuse.
Finally, we compared this against a mixture model with

only diffuse flow and an outlier layer. The reconstruction

error increased to 20.0mm for the center and 8.9mm for the
radius. Again this suggests the benefit of the weak specu-
lar flow constraint when reconstructing objects with mixed
specular-diffuse appearance.

7. Discussion and future work

We have formalized the notion of specular flow, i.e. the
image motion that results from a camera moving around a
reflective object. Unlike previous work that dealt with sin-
gle specular highlights, specular flow represents the dense
(or semi-dense) flow field that arises from reflective sur-
faces in textured environments. We showed how, under
the assumption of distant illumination fields, specular flow
can be related to the 3D geometry of reflective objects de-
fined by parametric implicit functions, and we furthermore
presented a method for computing the specular flow ap-
proximately under the assumption of small camera motion.
Moreover, we analyzed how the assumption of distant il-
lumination, which we termed the weak specular constraint,
can be used to constrain the geometry of an unknown re-
flective object.
Many reflective objects in the world show both diffuse

reflectance as well as specular reflection, and thus exhibit a
mixture of diffuse flow (the image motion of diffuse sur-
face markings) and specular flow. We explored whether
specular flow provides constraints on the geometry of such
objects that go beyond those provided by diffuse flow, and
found that diffuse and specular flow provide complementary
constraints. This motivates combining diffuse and specular
cues for surface reconstruction. We proposed a parametric
mixture model for surface recovery that is based on para-
metric models of diffuse and specular flow. Approximate
inference is performed using the EM algorithm, which also
provides ownership weights that segment the image into dif-
fuse and specular pixels.
We applied the model to synthetic image sequences as

well as a real sequence and found that using both specular
and diffuse flow leads to a better reconstruction accuracy
than reconstruction from the diffuse flow alone.
Given the complexity of the specular flow field in rela-

tion to 3D surface geometry it is interesting to ask whether
humans use such a cue in judgments of surface shape. Blake
and Bülthoff [7] studied the use of specularities in static
stereo perception and hypothesized that there is a straight-
forward connection between specular stereo and specular
motion perception. To explore whether humans use specu-
lar motion in judging surface shape we performed a series
of experiments [20] on the perception of specular flow with
random dot displays that remove the dependence on any
cues besides diffuse and specular motion. Random dot dis-
plays corresponding to diffuse and specular flow were not
perceived as coming from a shiny object. Despite this we
found that the combination of diffuse and specular flow im-



proved discrimination between convex and concave shapes.
Further studies are needed to better understand how well
humans are capable of perceiving geometry from specular
flow.
For machine vision there are a number of promising di-

rections for future work. The proposed model assumes that
the diffuse and specular motions occur in distinct image re-
gions. Future work should consider more general situations
related to transparency, where regions can contain both dif-
fuse and specular components at the same time. Further-
more, we have only applied our model to simple parametric
surfaces. It will be interesting to study more flexible sur-
face representations, for example a variational framework
such as [27]. The method here may also be useful for clas-
sifying material properties of surfaces from video. Finally,
the reconstruction method assumes that the external camera
parameters are recovered through an independent process.
Future work should address the joint recovery of camera
motion and surface geometry.
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