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Despite decades of research, a fast optical flow algorithm, that is also accu-
rate, remains an elusive goal. While recent optical flow methods such as [6]
are highly accurate, for many applications speed is often as important. Most
current methods take several seconds (or minutes) per frame, making them
impractical for long sequences. The fastest optical flow algorithms run in
under a second, but rely on GPUs [7], which are not available on all plat-
forms. We address both accuracy and speed and propose a new approach
called PCA-Flow that is based on sparse feature matches followed by inter-
polation. Both steps are fast to compute. To increase accuracy, especially at
motion boundaries, we extend PCA-Flow to a layered framework. Both ap-
proaches are significantly faster than methods with comparable accuracies.

PCA-Flow. The basic assumption for our work is that an arbitrary optical
flow field can be approximated as a weighted sum of a small number of basis
flow fields,

ũ =
N

∑
n=1

wnbn. (1)

Previously such linear flow models were only used in small image patches [2]
or simple, inherently low-dimensional scenarios such as driving vehicles [4].
In contrast, we use a linear model for full-frame optical flow in arbitrary
scenes. To find a suitable basis, we first compute optical flow for four Hol-
lywood movies, resulting in 8 hours of flow data. We then compute the
basis that spans this optical flow using a robust PCA method [3], and take
the first 250 eigenvectors in both horizontal and vertical directions as the
basis vectors bn. Figure 1(a) shows an example.

A linear model as in (1) has three main advantages. First, given a
fixed basis, the optical flow field is completely determined by the weights
w = (w1, . . . ,wN)

>, yielding a much more compact representation than the
2D vector field. Second, a domain-specific prior (for example for automo-
tive scenarios) on w can be learned even from small training sets. Third,
given sparse, matched features and taking the prior into account, we can ef-
ficiently compute w as the solution to a robustified, Tikhonov-regularized
least squares problem.

Figure 2(d) shows an example for an optical flow field computed by
PCA-Flow. Due to the low dimensionality of the optical flow basis, mo-
tion boundaries are blurry. However, in terms of average endpoint error our
method beats the widely used methods Classic+NL and LDOF, while re-
quiring on average 190 ms per flow field on a CPU. Figure 1(b) shows PCA-
Flow and other state of the art algorithms in the accuracy/runtime plane on
KITTI. While many algorithms are more accurate than ours, they are all
several times slower.

(a) First basis vectors of horizontal flow. (b) Timing results on KITTI

Figure 1: Learned flow basis and timing results

PCA-Layers. To increase accuracy at the motion boundaries, we extend
PCA-Flow to a layered model, PCA-Layers. This assumes that an optical
flow field can be decomposed into segments, each containing very simple
motion. Unfortunately so far, layered models have been computationally
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(a) First image of pair. (b) Tracked features.

(c) Ground truth optical flow. (d) PCA-Flow: Computed flow.

(e) PCA-Layers: Computed segmentation. (f) PCA-Layers: Computed flow.

Figure 2: Results of PCA-Flow and PCA-Layers.

expensive [5]. Here, we cluster matched features into layers using Expec-
tation Maximization (EM), and use PCA-Flow to efficiently compute the
motion of each layer. The computation of a dense flow field then becomes
a labelling problem, in which each pixel is assigned to one of the motion
layers. We formulate this as a Markov Random Field, taking into account
brightness constancy, color consistency and spatial compactness within the
layers, and a smoothness term that incorporates image content. This smooth-
ness term leads to good extrapolation of flow values to image regions that
are not well covered by matched features.

Figure 2(e) shows an example for the computed layer segmentation,
and Fig. 2(f) shows the resulting optical flow. Compared to Fig. 2(d), the
motion boundaries are much better preserved. PCA-Layers takes on average
3.2 seconds per pair of frames, and in MPI-Sintel ranks in place 10 of 36
in the final pass and in place 9 of 36 in the clean pass, beating popular
methods such as MDP-Flow. The next fastest method with similar accuracy,
SparseFlow, is over 2.5 times slower, taking 10 s per frame.

More details on the optimization and more results can be found in the
paper. The code for PCA-Flow, PCA-Layers, and the learned optical flow
basis is available at [1].
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