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ABSTRACT 

tics are described in this paper. We show that anisotropic 
diffusion can be seen as a robust estimation procedure that 
estimates a piecewise smooth image from a noisy input im- 
age. The “edge-~topping~’ function in the anisotropic diffu- 
sion equation is closely related to the error norm and influ- 
ence function in the robust estimation framework. This con- 
nection leads to a new “edge-stopping’’ function based on 
Tukey ’s biweight robust estimator, that preserves sharper 
boundaries than previous formulations and improves the 
automatic stopping of the diffusion. The robust statisti- 
cal interpretation also provides a means for detecting the 
boundaries (edges) between the piecewise smooth regions 
in the image. We extend the framework to vector-valued 
images and show applications to robust image sharpening. 
Key words: Anisotropic diffusion, robust statistics, Rie- 
mannian geometry, color and texture images. 

Relations between anisotropic diffusion and robust statis- 

1. INTRODUCTION 

Since the elegant formulation of anisotropic diffusion intro- 
duced by Perona and Malik [9], a considerable amount of 
research has been devoted to the theoretical and practical 
understanding of this and related methods for image en- 
hancement. See [l, 2, 101 and references therein. In this pa- 
per we develop a statistical interpretation of anisotropic dif- 
fusion, specifically, from the point of view of robust statis- 
tics. We show that the Perona-Malik [9] diffusion equa- 
tion is equivalent to a robust procedure that estimates a 
piecewise constant image from a noisy input image. The 
“edge-stopping’’ function in the anisotropic diffusion equa- 
tion is closely related to the error norm and influence func- 
tion in the robust estimation framework. We exploit this 
robust statistical interpretation of anisotropic diffusion to 
choose alternative robust error norms, and hence, alterna- 
tive “edge-stopping’’ functions. In particular, we propose a 
new “edge-stopping” function based on Tukey ’s biweight ro- 
bust error norm, which preserves sharper boundaries than 
previous formulations and improves the automatic stopping 
of the diffusion. The robust statistical interpretation also 
provides a means for detecting the boundaries (edges) be- 
tween the piecewise constant regions. These boundaries are 
considered to be “outliers” in the robust estimation frame- 
work. Edges in a smoothed image are, therefore, very sim- 
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ply detected as those points that are treated as outliers. 
Details, examples, and extensions, including connections to 
line processing and techniques as those described in [4, 51, 
can be found in [2]. We also show, following [13], extensions 
of this method to color images and vector data in general, 
and describe the use of the theory here presented for image 
sharpening. 

2. ANISOTROPIC DIFFUSION 

Diffusion algorithms remove noise from an image by mod- 
ifying the image via a partial differential equation (PDE). 
For example, consider applying the isotropic diffusion equa- 
tion (the heat equation) given by = div(VI), using 
the original (degraded/noisy) image I z, y, 0 as the initial 

continuous domain, (2, y)  specifies spatial position, t is an 
artificial time parameter, and where V I  is the image gradi- 
ent. 

Perona and Malik [9] replaced the classical isotropic dif- 
fusion equation with 

condition, where I ( z ,  y, 0) : IR2 -f R i )  is an image in the 

’’ t ,  = div(g(I1 V I  Il)VI), at 

where 1 1  V I  11 is the gradient magnitude, and g(ll V I  11) is an 
“edge-stopping” function. This function is chosen to satisfy 
g(z) + 0 when z i 00 so that the diffusion is “stopped” 
across edges. 

Perona and Malik discretized their anisotropic diffusion 
equation as follows: 

where I: is a discretely-sampled image, s denotes the pixel 
position in a discrete, two-dimensional grid, and t now de- 
notes discrete time steps (iterations). The constant X € 
Bt is a scalar that determines the rate of diffusion, qs 
represents the spatial neighborhood of pixel s, and 117.1 
is the number of neighbors. They linearly approximated 
the image gradient (magnitude) in a particular direction as 
VI*,p = I p  - I:, p E 17s 

Qualitatively, the effect of anisotropic diffusion is to 
smooth the original image while preserving brightness dis- 
continuities. As we will see, the choice of g(.) can greatly 
affect the extent to which discontinuities are preserved. 
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3. ROBUST ESTIMATION 

Our goal is to develop a statistical interpretation of the 
Perona-Malik anisotropic diffusion equation. Toward that 
end, we adopt an oversimplified statistical model of an im- 
age. In particular, we assume that a given input image is 
a piecewise constant function that has been corrupted by 
zero-mean Gaussian noise with small variance. 

Consider the image intensity differences, IP  - I $ ,  be- 
tween pixel s and its neighboring pixels p .  Within one of 
the piecewise constant image regions, these neighbor differ- 
ences will be small, zero-mean, and normally distributed. 
Hence, an optimal estimator for the “true” value of the 
image intensity Is at pixel s minimizes the square of the 
neighbor differences. This is equivalent to choosing I ,  to 
be the mean of the neighboring intensity values. 

however, for an image region that includes a boundary (in- 
tensity discontinuity). The intensity values of the neighbors 
of an edge pixel s are drawn from two different populations, 
and in estimating the “true” intensity value at  s we want 
to include only those neighbors that belong to the same 
population. With respect to our assumption of Gaussian 
noise within each constant region, if p and s belong to two 
different sides of the edge, the neighbor difference I, - I ,  
can be viewed as an outlier because it does not conform to 
the statistical assumptions. 

The field of robust statistics [6, 71 is concerned precisely 
with estimation problems in which the data contains gross 
errors, or outliers. See for example [a] for references to the 
applications of robust statistics to image processing and 
computer vision. 

Motivated then by robust statistics, we wish to find an 
image I that satisfies the following optimization criterion: 

The neighbor differences will not be normally distributed, 

$ € I  P € V S  

where p ( . )  is a robust error norm and U is a “scale” pa- 
rameter that  will be discussed further below. To minimize 
(3),  the intensity at each pixel must be “close” to those of 
its neighbors. As we shall see, an appropriate choice of the 
p-function allows us to minimize the effect of the outliers at  
the boundaries between piecewise constant image regions. 

Equation (3) can be solved by gradient descent: 

x I:+1 = 1: + - $ ( I p  - I: ,  U ) ,  

l V S ’  P e l .  

(4) 

where $(.) = p’(.), and t again denotes the iteration. The 
update is carried out simultaneously at every pixel s. 

The specific choice of the robust error norm or p-function 
in ( 3 )  is critical. To analyze the behavior of a given p- 
function, we consider its derivative $, which is proportional 
t o  the influence function [6]. This function characterizes the 
bias that a particular measurement has on the solution. For 
example, the quadratic p-function has a linear $-function. 

If the distribution of values ( I p  - I t )  in every neigh- 
borhood is a zero-mean Gaussian, then p ( z , r )  = z z / r z  
provides an optimal local estimate of I:. This least-squares 
estimate of I,” is, however, very sensitive to outliers because 
the influence function increases linearly and without bound. 

For a quadratic p, I:+‘ is assigned to be the mean of the 
neighboring intensity values IP .  When these values come 
from different populations (across a boundary) the mean 
is not representative of either population, and the image is 
blurred too much. Hence, the quadratic gives outliers (large 
values of lV13,p\) too much influence. 

To increase robustness and reject outliers, the p-function 
must be more forgiving about outliers; that is, it should 
increase less rapidly than z2. For example, consider the 
Lorentzian error norm (see Figure 1): 

Examination of the $-function reveals that ,  when the ab- 
solute value of the gradient magnitude increases beyond a 
fixed point determined by the scale parameter r ,  its influ- 
ence is reduced. We refer to this as a redescendinginfluence 
function [6]. 

4. ROBUST STATISTICS AND ANISOTROPIC 
DIFFUSION 

We now explore the relationship between robust statistics 
and anisotropic diffusion by showing how to convert back 
and forth between the formulations. Recall the continuous 
anisotropic diffusion equation (1). The continuous form of 
the robust estimation problem in (3) can be posed as: 

r 

where Cl is the domain of the image and where we have 
omitted U for notational convenience. One way to minimize 
(6) is via gradient descent using the calculus of variations: 

By defining g(z) = e, we obtain the straightforward 
relation between image reconstruction via robust estimation 
(6) and image reconstruction via anisotropic diffusion (1). 
(See for example [9, 141 for previous uses of this relation.) 

The same relationship holds for the discrete formula- 
tion; compare ( 2 )  and (4) with $(%) = p’ (z)  = g(z)z. 
Note that additional terms will appear in the gradient de- 
scent equation if the magnitude of the image gradient is 
discretized in a nonlinear fashion. In the remainder of this 
paper we proceed with the discrete formulation as given in 
previous section. The basic results we present hold for the 
continuous domain as well. 

Perona and Malik suggested two different edge stopping 
functions ( g ( . ) )  in their anisotropic diffusion equation. Each 
of these can be viewed in the robust statistical framework 
by converting the g(.) functions into the related p-functions. 
They first suggested g(z) = +, for a positive constant 

K .  It is easy to see, [a, 8, 141, that this edge stopping func- 
tion corresponds to the Lorentzian norm of robust statis- 
tics. The other g-function proposed by Perona and Malik 
is related to the robust error norm proposed by Leclerc. 

I +  
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5. EXPLOITING THE RELATIONSHIP 

The above derivations demonstrate that  anisotropic diffu- 
sion is the gradient descent of an estimation problem with a 
familiar robust error norm. What’s the advantage of know- 
ing this connection? We answer this question now. 

While the Lorentzian is more robust than the quadratic 
norm, its influence does not descend all the way to  zero. We 
can choose a more “robust” norm from the robust statis- 
tics literature which does descend to  zero, as the Tukey’s 
biweight, whose influence function is plotted in Figure 1: 

(8) -4  + gs 1x1 5 
otherwise 

p ( x , u )  = { 8-  2. 

Another error norm from the robust statistics litera- 
ture, is Huber’s minimaxnorm [7] (see also [12, 14]), whose 
influence function is also plotted in Figure 1: 

We would like to  compare the influence ($-function) of 
these three norms, but a direct comparison requires that we 
dilate and scale the functions to  make them as similar as 
possible. 

First, we need to determine how large the image gradi- 
ent can be before we consider it to  be an outlier. We appeal 
to  tools from robust statistics to automatically estimate the 
“robust variance,” U,, of the image as the MAD [ I l l :  

ue = 1.4826 medianT(l1 V I  - medianr(l1 V I  1 1 )  1 1 )  (12) 

where the constant is derived from the fact that  the MAD 
of a zero-mean normal distribution with unit variance is 
0.6745 = 111.4826. For a discrete image, the robust vari- 
ance, ue, is computed using the gradient magnitude approx- 
imation introduced before. 

Second, we choose values for the scale parameters U to 
dilate each of the three influence functions so that they 
begin rejecting outliers at the same value: ue. The point 
where the influence of outliers first begins to  decrease oc- 
curs when the derivative of the $-function is zero. For the 
modified L1 or Huber’s norm this occurs at ue = U .  For the 
Lorentzian norm it occurs a t  U, = f i u  and for the Tukey 
norm it occurs at ue = U/& Defining D with respect to 
U, in this way we plot the influence functions for a range 
of values of x in Figure l a .  Note how each function now 
begins reducing the influence of measurements a t  the same 
point. 

Third, we scale the three influence functions so that 
they return values in the same range. To do this we take 
X in (2) to be one over the value of $(ue,u) .  The scaled 
$-functions are plotted in Figure 1 b. 

Now we can compare the three error norms directly. 
The modified LI  norm gives all outliers a constant weight 
of one while the Tukey norm gives zero weight to outliers 

whose magnitude is above a certain value. The Lorentzian 
(or Perona-Malik) norm is in between the other two. Based 
on the shape of $(.) we would predict that  diffusing with 
the Tukey norm produces sharper boundaries than diffus- 
ing with the Lorentzian (standard Perona-Malik) norm, and 
that both produce sharper boundaries than the modified L1 

norm. We can also see how the choice of function affects the 
“stopping” behavior of the diffusion; given a piecewise con- 
stant image where all discontinuities are above a threshold, 
the Tukey function will leave the image unchanged whereas 
the other two functions will not. 

Figure 1: Lorentzian, Tukey, and Huber $-functions. Left: 
Valves of U chosen as a function of U, so that outlier “re- 
jection” begins at the same value for  each function. Right: 
The functions aligned and scaled. (This is a color figure.) 

These predictions are born out experimentally, as can be 
seen in Figure 2 .  The figure compares the results of diffusing 
with the Lorentzian and the Tukey functions. The value of 
U, = 10.278 was estimated automatically using (12) and the 
values of U and X for each function were defined with respect 
to  ue as described above. The  figure shows the diffused 
image after 500 iterations of each method. Observe how the 
Tukey function results in sharper discontinuities. Note that 
we can detect edges in the smoothed images very simply by 
detecting those points that  are treated as outliers by the 
given p-function. Figure 2 shows the outliers (edge points) 
in each of the images, that  is, pixels where 

It is interesting to note that common robust error norms 
have frequently been proposed in the literature without 
mentioning the motivation from robust statistics. For ex- 
ample, Rudin et al. [la] proposed a formulation that is 
equivalent to using the L1 norm. You et al. [14] explored a 
variety of anisotropic diffusion equations and reported bet- 
ter results for some than for others. In addition to their 
own explanation for this, their results are predicted, follow- 
ing the development presented here, by the robustness of 
the various error norms they use. 

> ue. 

6. ROBUST ANISOTROPIC SHARPENING 

The basic idea behind image sharpening is to add high fre- 
quencies to an image. That  is, the sharpened image I is 
obtained from the blurred image I via I = I + H ( I ) ,  where 
H ( . )  represents some kind of high-pass filter operation, e.g., 
the Laplacian. The problem with this approach, denoted as 
unsharp masking, is that  it also enhances noise, and not only 
edges. To solve this problem, in [3] the author proposes to 
mask H ( I )  with an edge detector. Since the framework here 
described is natural to  detect edges, it is natural as well to 
accomplish this task. The  basic idea is then to perform 
anisotropic diffusion on the Image I ,  robustly detect edges 
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based on outliers, and then mask H ( I )  using these edges. 
An example is given in Figure 3. 

7. VECTOR-VALUED IMAGES 

The extension of the results presented above for vector- 
valued images follows the framework introduced in [13]. 
The basic idea is that  the gradient direction & and the 
gradient magnitude 1 1  V I  1 1  are replaced by concepts derived 
from the first fundamental form of the vector image. The  
direction of maximal change 8, (“the gradient direction”) 
of the vector data  is given by the eigenvector of this funda- 
mental form corresponding to the maximal eigenvalue A + ,  
and the value of the maximal change (“the gradient mag- 
nitude”) is given by a function of both eigenvalues, that  is, 
f (A+,A- ) .  Note that 8+ ,  A + ,  and A- depend on all the 
components of the vector-valued image. 

To extend the robust anisotropic diffusion approach to 
vector data,  we have basically two possibilities. One, [13], 
if to formulate the problem as the minimization of 

selecting p to  be the Tukey’s robust function. The gradient 
descent of this variational problem will give a system of 
coupled anisotropic diffusion equations. The second option 
if to derive directly the anisotropic equation from (7),  and 
evolve each one of the image components I t  according to  

>> 
where 4 is the Tukey’s influence function. 

Figure 3: Original image (left) and result of sharpening with 
robust masking. (This is a color figure). 
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Figure 2: Comparison of the Perona-Malik (Lorentzian) 
function (left) and the Tukey func t ion  (right) after 500 it- 
erations. The f irst  row shows the original image. The last 
row shows the edges obtained from the outliers. 
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